
RankT5: Fine-Tuning T5 for Text Ranking with Ranking Losses
Honglei Zhuang
hlz@google.com
Google Research

Zhen Qin
zhenqin@google.com
Google Research

Rolf Jagerman
jagerman@google.com
Google Research

Kai Hui
kaihuibj@google.com
Google Research

Ji Ma
maji@google.com
Google Research

Jing Lu
ljwinnie@google.com
Google Research

Jianmo Ni
jianmon@google.com
Google Research

Xuanhui Wang
xuanhui@google.com
Google Research

Michael Bendersky
bemike@google.com
Google Research

ABSTRACT
Pretrained language models such as BERT have been shown to be
exceptionally effective for text ranking. However, there are limited
studies on how to leverage more powerful sequence-to-sequence
models such as T5. Existing attempts usually formulate text ranking
as a classification problem and rely on postprocessing to obtain
a ranked list. In this paper, we propose RankT5 and study two
T5-based ranking model structures, an encoder-decoder and an
encoder-only one, so that they not only can directly output ranking
scores for each query-document pair, but also can be fine-tuned
with “pairwise” or “listwise” ranking losses to optimize ranking
performance. Our experiments show that the proposed models
with ranking losses can achieve substantial ranking performance
gains on different public text ranking data sets. Moreover, ranking
models fine-tuned with listwise ranking losses have better zero-shot
ranking performance on out-of-domain data thanmodels fine-tuned
with classification losses.

CCS CONCEPTS
• Information systems→ Learning to rank.

KEYWORDS
T5, text ranking, ranking losses
ACM Reference Format:
Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui, Ji Ma, Jing Lu, JianmoNi,
Xuanhui Wang, and Michael Bendersky. 2023. RankT5: Fine-Tuning T5 for
Text Ranking with Ranking Losses. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’23), July 23–27, 2023, Taipei, Taiwan. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3539618.3592047

1 INTRODUCTION
Text ranking is a fundamental component of countless real world
applications such as search and question answering. Progress on
pretrained language models in the past few years [7] and the release
of large-scale public data sets [1, 20] enable a series of work [12, 23,
33] on text ranking models which directly encode textual query and
document using pretrained language models, noticeably BERT [7].
Recently, large language models such as T5 [37], GPT-3 [2] and

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9408-6/23/07.
https://doi.org/10.1145/3539618.3592047

InstructGPT [34] have shown superior performance in various
NLP tasks including sentiment analysis, coreference resolution, and
translation. Such models often have much larger size available than
previous models such as BERT [7] to store more hidden knowledge.
They also mostly have a sequence-to-sequence interface to unify
different NLP tasks from classification to text generation.

While BERT-based models have been well explored for text rank-
ing [12, 23, 33], how to leverage T5 for text ranking is still under-
explored and challenging. First, while many classification and text
generation tasks fit into the sequence-to-sequence framework, text
ranking tasks are more difficult: a text ranking model is often ex-
pected to output a numerical ranking score 𝑦 ∈ R for each query-
document pair. Second, it is important to train a text ranking model
with ranking losses [14, 25, 36] to optimize its ranking performance,
where the losses take into account the ranking scores from multiple
documents for each query. This is different from the typical T5
fine-tuning strategy where the objective is often formulated into a
text generation loss for each single input sequence independently.

A typical approach to use T5 for text ranking is to convert the
problem into a token generation problem. For example, Nogueira
et al. [32] fine-tune the T5 model to predict a “true” or “false”
token for a relevant or irrelevant query-document pair and then use
a postprocessing step during inference to derive ranking scores to
rank candidate documents. Such an approach can be considered as a
“pointwise” classification formulation. How to extend this approach
to fine-tune T5 with ranking losses is not well-explored.

In this paper, we propose RankT5 with the goal to support text
rankingmore nativelywith T5 by outputting ranking scores, instead
of text tokens. We first adapt the encoder-decoder structure for this
goal. We also propose an encoder-only structure which omits the T5
decoder. These two structure variants allow us to fine-tune T5 with
various ranking losses to directly optimize ranking performance.

Experiments onMSMARCO andNatural Question (NQ) data sets
show that our RankT5 models fine-tuned with specialized ranking
losses can significantly outperform other T5 ranking models fine-
tuned with classification losses and previously proposed T5 adapta-
tions for ranking [32]. We also discover that models fine-tuned with
some ranking losses tend to have better zero-shot performance than
models fine-tuned with classification losses. Checkpoints of RankT5
fine-tuned with ranking losses are released publicly (Section 5).

2 RELATEDWORK
Model structure. A typical ranking model structure design is the
cross-attention model structure, where a query and a candidate
document is concatenated into a sequence and fed into the model.
This model structure has been explored for BERT-like encoder-only

https://doi.org/10.1145/3539618.3592047
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3539618.3592047

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Honglei Zhuang et al.

model [10, 12, 33] and T5-like model [17, 32], but the model is not
directly fine-tuned with ranking losses for the optimal ranking
performance. There are also models taking multiple documents as
input [29, 35, 48], but they are usually applied in a late ranking
stage and are complementary to our work. Some other models rank
documents by the likelihood of query generated from language
models given the document [8, 17, 40, 49, 50].

Notice that our focus is not on the retrieval task [9, 13, 18, 19,
24, 28, 41], where the model needs to score hundreds of millions of
documents in the entire corpus almost instantly for each query.
Fine-tuning with ranking losses. Early explorations [32, 33] of
applying pretrained language models on the document reranking
task mainly use “pointwise” losses, where the loss is calculated for
each query-document pair independently. There are some recent
works that use a “listwise” loss [10, 12, 27, 38], but they only fine-
tune BERT, RoBERTa, ERNIE, etc. There is no existing work fine-
tuning sequence-to-sequence models like T5 with ranking losses.
Others fine-tune retrieval models with pairwise or softmax loss [18,
26, 47], while we focus on reranking models in this work.

There are also several studies of pretraining methods tailored
to enhance text ranking [11, 30, 44–46]. While we only focus on
fine-tuning, our proposed method can be seamlessly applied.

3 PRELIMINARIES
Problem definition. We provide the formalized definition of a
ranking task. For each query 𝑞𝑖 , a list of𝑚 candidate documents
𝐷𝑖 = (𝑑𝑖1, . . . , 𝑑𝑖𝑚) are provided, which are usually the output from
a retriever. The relevance labels of candidate documents with regard
to the query are represented as y𝑖 = (𝑦𝑖1, . . . , 𝑦𝑖𝑚) where 𝑦𝑖 𝑗 ≥ 0.

The objective is to train a ranking model 𝑓 which takes a query-
document pair as input and outputs a ranking score𝑦𝑖 𝑗 = 𝑓 (𝑞𝑖 , 𝑑𝑖 𝑗) ∈
R. We aim to optimize the ranking metrics after we sort the docu-
ments in 𝐷𝑖 for each query 𝑞𝑖 based on their ranking scores.
T5. T5 [37] is a text-to-text pretrained generative language model
with an encoder-decoder structure. It takes a piece of text as input
and outputs a sequence of text tokens in an autoregressive manner.

More formally, we denote the input to the T5 encoder as a text
sequence 𝑠 = [𝑤1, . . . ,𝑤𝑙] and the previously generated tokens
from the T5 decoder as 𝑡1:𝑘−1 during the autoregressive decoding
process. We formalize the T5 model structure as:

p𝑘 = T5(𝑠, 𝑡1:𝑘−1) = Softmax(Dense(Dec(Enc(𝑠), 𝑡1:𝑘−1)))

where the output is a vector with the length of the vocabulary
size p𝑘 ∈ R |V | , representing the predictive probability of each
token in the vocabulary being generated at the 𝑘-th position; Enc(·)
and Dec(·, ·) are the encoder and the decoder of T5 respectively;
Dense(·) is a dense layer; Softmax(·) is a softmax transformation
layer that normalizes the vector into a probability distribution.

4 RANKT5 MODELING
4.1 Model structure
We propose to directly obtain the numerical ranking score as the
model output, so that the model can be directly fine-tuned by rank-
ing losses to optimize ranking metrics. We present two variants
based on T5: an encoder-decoder and an encoder-only model.

T5 Encoder

Query Document i

Ranking score

Query: A query Document: This is the content.

… …

… T5 Decoder

Dense

… Unnormalized
logits

<extra_id_10>

(a) RankT5 Encoder-Decoder

T5 Encoder

Query Document i

Ranking score

Query: A query Document: This is the content.

… …

Dense

(b) RankT5 Encoder-Only

Figure 1: Model structures of the two variants of RankT5.

Input sequence. For each candidate document 𝑑𝑖 𝑗 and its query
𝑞𝑖 , we concatenate them with prefix “Document:” and “Query:”
respectively to construct the input text 𝑠𝑖 𝑗 :

𝑠𝑖 𝑗 = Query: 𝑞𝑖 Document: 𝑑𝑖 𝑗
The construction of input sequence is similar to Nogueira et al. [32]
except that we do not include the “Relevant:” postfix. The postfix
does not affect the results in our experiments.
Encoder-decoder (EncDec). This model variant is a simple adap-
tation of the T5 model by using the first output token of the decoder.
In this variant, we feed the input into a T5 model and obtain the
unnormalized logits z over the entire vocabulary:

z = Dense(Dec(Enc(𝑠𝑖 𝑗))) (1)

Notice that we omit the softmax layer over vocabulary so that the
elements in z can be arbitrary real numbers. We also do not need
previous tokens 𝑡1:𝑘−1 since we do not generate tokens.

We specify an unused token in T5 vocabulary “<extra_id_10>”
and take its corresponding unnormalized logits as the ranking score:

𝑦𝑖 𝑗 = z(<extra_id_10>) (2)

where we use the notation z(𝑤) to represent the logits correspond-
ing to the token𝑤 ∈ V . The special token can be any other unused
token in the vocabulary. An illustration of this model structure can
be found in Figure 1(a).
Encoder-only (Enc). We also propose an encoder-only variant
since we do not need to perform autoregressive decoding. The
input text 𝑠𝑖 𝑗 remains the same as the encoder-decoder model. We
take the output of the encoder Enc(𝑠𝑖 𝑗), which is a sequence of
embedding vectors [e1, · · · , e𝑙], and apply a pooling layer Pool(·)
to aggregate them into a single embedding vector. Then we apply
the dense layer which directly projects the embedding vector to
the ranking score 𝑦𝑖 𝑗 . More formally,

𝑦𝑖 𝑗 = Dense(Pool(Enc(𝑠𝑖 𝑗))) (3)

Figure 1(b) summarizes the proposed model structure.

4.2 Training
For each query 𝑞𝑖 and a list of its candidate documents 𝐷𝑖 , we
obtain the list of predicted ranking scores ŷ𝑖 by applying the model
on each query-document pair (𝑞𝑖 , 𝑑𝑖 𝑗) where 𝑑𝑖 𝑗 ∈ 𝐷𝑖 . Then we
can train the model by optimizing a ranking-based training loss

RankT5: Fine-Tuning T5 for Text Ranking with Ranking Losses SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

function ℓ (y𝑖 , ŷ𝑖), defined on the two lists of predicted scores ŷ𝑖
and relevance labels y𝑖 . We study the following ranking losses:
Pairwise logistic (Pair). We can train the model using a pairwise
logistic ranking loss [4]:

ℓPair (y𝑖 , ŷ𝑖) =
𝑚∑
𝑗=1

𝑚∑
𝑗 ′=1
I𝑦𝑖 𝑗>𝑦𝑖 𝑗′ log

(
1 + 𝑒 �̂�𝑖 𝑗′−�̂�𝑖 𝑗

)
where the ranking problem is converted into a binary classification
problem on the order of each candidate document pair in the same
list with different relevance labels.
Listwise softmax cross entropy (Softmax). We can also define
a listwise softmax cross entropy loss [3], which is a simple version
of ListNet [5]. It takes the entire list into account.

ℓSoftmax (y𝑖 , ŷ𝑖) = −
𝑚∑
𝑗=1

𝑦𝑖 𝑗 log
(𝑒 �̂�𝑖 𝑗∑

𝑗 ′ 𝑒
�̂�𝑖 𝑗′

)
Listwise poly-1 softmax cross entropy (Poly1). We also try a
recently proposed extended version of the softmax cross-entropy
loss called PolyLoss [22]. The idea is to adjust the weights of poly-
nomial terms in the Taylor expansion of a softmax cross entropy
loss. A simplified version only adjusted the first polynomial term:

ℓPoly1 (y𝑖 , ŷ𝑖) = ℓSoftmax (y𝑖 , ŷ𝑖) +
𝑚∑
𝑗=1

𝜖 · 𝑦𝑖 𝑗 ′
(
1 − 𝑒 �̂�𝑖 𝑗∑

𝑗 ′ 𝑒
�̂�𝑖 𝑗′

)
where 𝜖 is a parameter specified by users, representing how much
extra coefficient to be placed for the first polynomial term.

5 EXPERIMENT SETUP
5.1 Data sets
MSMARCO. We use the MS MARCO passage ranking data set [1].
The data set contains around 530,000 queries in the “train” partition
and around 6,800 queries in the “dev” partition. The candidates
are from a corpus with more than 8.8 million passages. For each
query, relevant passages are labeled as 1, and others are labeled as
0. We use a dual-encoder retriever [31] fine-tuned on MS MARCO
to retrieve the top-1000 passages for each query in both the “train”
and “dev” partitions as the candidate documents.

Notice that in this paper, the term “document” is used inter-
changeably with “passage”. We do not focus on long document
ranking tasks such as the MS MARCO document ranking task.
Natural Questions (NQ). We use the Natural Questions data
set [20] with more than 50,000 queries in the “train” partition and
8,000 in the “dev” partition. We adopt the preprocessing setup
similar to Karpukhin et al. [18] to construct the corpus of passages.
Similar to MS MARCO, binary relevance labels are provided. We
use a dual-encoder retriever [26] fine-tuned on NQ to retrieve the
top-1000 passages for each query.
Training data construction. We construct the training data by
first selecting a document with label 1 for each query and then
uniformly randomly sampling (𝑚 − 1) documents from the top-
1000 retrieved documents with label 0. We set the list size𝑚 to 36
in our experiments due to hardware constraints.

For models with pointwise training losses, we upsample docu-
ments with label 1 in each query to the same number as documents
with label 0 in order to achieve the optimal performance.

Evaluation. We evaluate the performance on the “dev” partition
on both data sets. We perform model inference on the top-1000
documents retrieved by the dual-encoder retriever of each data
set respectively. We evaluate the performance by Mean Reciprocal
Rank (MRR@10) [43], Normalized Discounted Cumulative Gain
(NDCG@5, 10) [16] and Mean Average Precision (MAP).

5.2 Parameter configurations
We initialize the ranking model with pretrained T5-Large check-
point if not specified otherwise. For the pooling layer in RankT5-
Enc, we follow BERT [7] and take the embedding vector of the first
token. The results do not differ when using other pooling methods
like mean pooling in our experiments.

We set themaximum input sequence length to 128 and 128+256 =
384 for MS MARCO and NQ respectively. We do not find significant
performance degradation compared to using 512 as the sequence
length. The batch size is set to 32 lists per batch for both data sets.
We use a constant learning rate of 1 × 10−4 during fine-tuning. For
the MS MARCO data set, we fine-tune our models for 50,000 steps.
For the NQ data set, we fine-tune most of our models for 100,000
steps, except the ones using pointwise cross-entropy loss, which
achieves the best performance at 25,000 steps. For Poly1 loss, we
simply set 𝜖 = 1 for all of our experiments.

The model implementation is based on T5X1. All the ranking
losses are implemented in Rax2 [15]. Selected checkpoints of fine-
tuned RankT5 are released publicly3.

6 RESULTS
Overall comparison. We compare the performance of our pro-
posed rankers with different model structures and different training
losses. We train the monoT5 model [32] and BERT [12] models on
our data sets and report their performance as baselines. The BERT
models are initialized from BERT-Large checkpoints and fine-tuned
with pointwise cross-entropy classification loss (PointCE) and the
listwise softmax cross-entropy ranking loss (Softmax) respectively.
We also include results where our proposed RankT5 models are
fine-tuned with the pointwise cross-entropy classification loss. All
results are presented in Table 1.

We observe that fine-tuning with ranking losses substantially
helps RankT5 improve the ranking performance. RankT5 with Soft-
max and Poly1 consistently outperform other baselines, including
RankT5 with the classification loss (PointCE). On both data sets,
the best performing RankT5 improves around +2% in all metrics
compared to monoT5.

We also verify that the initial checkpoint of T5 shows advantage
over the initial checkpoint of BERT. RankT5-Enc and BERT have
similar model size and structure but different pretrained check-
points. When fine-tuned with the Softmax loss, RankT5-Enc out-
performs BERT with a large margin on both data sets (+3.7% to
+4.7% in MRR@10). This demonstrates the importance of using
state-of-the-art initial checkpoints and justifies the necessity of this
work to adapt sequence-to-sequence models like T5 for ranking.

1https://github.com/google-research/t5x
2https://github.com/google/rax
3https://github.com/google-research/google-research/tree/master/rankt5

https://github.com/google-research/t5x
https://github.com/google/rax
https://github.com/google-research/google-research/tree/master/rankt5

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Honglei Zhuang et al.

Table 1: Comparing ranking performances of different ranking models. The best performance for each data set is bolded.
Results with † are statistically significantly (𝑝 ≤ 0.05) better than monoT5.

Model Loss MS MARCO NQ
MRR@10 NDCG@5 NDCG@10 MAP MRR@10 NDCG@5 NDCG@10 MAP

BERT PointCE 0.3867 0.4127 0.4530 0.3932 0.5157 0.5515 0.5733 0.5228
Softmax 0.3928 0.4173 0.4580 0.3978 0.5213 0.5566 0.5791 0.5276

monoT5 Generation 0.4156 0.4448 0.4843 0.4206 0.5406 0.5861 0.6079 0.5434

RankT5-EncDec

PointCE 0.4209 0.4496 0.4895† 0.4260† 0.5403 0.5833 0.6079 0.5457†

Pair 0.4177 0.4456 0.4852 0.4229 0.5574† 0.5957† 0.6198† 0.5629†

Softmax 0.4278† 0.4573† 0.4960† 0.4326† 0.5687† 0.6068† 0.6291† 0.5740†

Poly1 0.4343† 0.4640† 0.5025† 0.4383† 0.5647† 0.6032† 0.6255† 0.5701†

RankT5-Enc

PointCE 0.4216† 0.4509† 0.4888 0.4269† 0.5441 0.5851 0.6099 0.5496†

Pair 0.4206 0.4513† 0.4891† 0.4256 0.5595† 0.5980† 0.6215† 0.5650†

Softmax 0.4305† 0.4582† 0.4987† 0.4347† 0.5620† 0.6018† 0.6231† 0.5674†

Poly1 0.4296† 0.4586† 0.4970† 0.4344† 0.5689† 0.6068† 0.6279† 0.5744†

Base Large 3B
T5 Model Size

0.39

0.40

0.41

0.42

0.43

0.44

0.45

M
R

R
@

10

Softmax
PointCE

(a) MS MARCO

Base Large 3B
T5 Model Size

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

M
R

R
@

10

Softmax
PointCE

(b) NQ

Figure 2: Comparing performance with different T5 model
sizes. Ranking models are RankT5-EncDec fine-tuned with
different losses. The 95% confidence intervals are plotted.

We do not find a consistent winner between the encoder-decoder
(EncDec) and the encoder-only (Enc) model structure. A possible
explanation is that the T5 decoder is less important when the model
is fine-tuned for text ranking tasks with sufficient training data.
Model size comparison. We examine how the T5 model size
affects the ranking performance. We fine-tune the RankT5-EncDec
model with the Softmax and the PointCE loss with different sizes
of T5 model checkpoints (“Base”, “Large” and “3B”). We evaluate
the model performance on both data sets measured by MRR@10.
Results are plotted in Figure 2.

The first observation is that the performance consistently im-
proves when the model size increases (+7% for 3B vs. Base on NQ),
highlighting the potential to enable even larger language mod-
els [6] in a similar method for better ranking performance. Another
observation is that models with Softmax consistently outperform
PointCE (all statistically significant with 𝑝 ≤ 0.05) and the gaps
remain relatively stable across different model sizes. This might
suggest that the extra benefits brought by using ranking loss cannot
be compensated for by simply using larger models.
Zero-shot results. We also compare the zero-shot performance
of our ranking models fine-tuned with different ranking losses. We
use a subset of BEIR [42] data sets4 with easily accessible corpus.
4Notice that the NQ data set in BEIR is has a different corpus and query set from the
NQ data set we used earlier.

Table 2: Zero-shot performance comparison. Ranking mod-
els are RankT5-Enc fine-tuned on the MS MARCO data
set with different losses. The performance is measured by
NDCG@10. The best performance for each data set is bolded.

Data set PointCE Softmax Data set PointCE Softmax

TREC-COVID 0.7522 0.8071 Touché-2020 0.4594 0.4401
BioASQ 0.5346 0.5635 Quora 0.8221 0.8309
NFCorpus 0.3263 0.3810 DBPedia 0.4345 0.4422

NQ 0.5959 0.6142 SCIDOCS 0.1821 0.1806
HotpotQA 0.7126 0.7100 FEVER 0.8352 0.8316
FiQA-2018 0.4156 0.4450 Climate-FEVER 0.2062 0.2152
Signal-1M 0.3153 0.3200 SciFact 0.7493 0.7499
ArguAna 0.2232 0.3300 Average 0.5024 0.5241

We take the RankT5-Enc models fine-tuned on the MSMARCO data
set with the PointCE loss and the Softmax loss respectively, and
apply them to rerank top-1000 documents returned by BM25 [39].
Table 2 summarizes ranking performance measured by NDCG@10.

The ranking model fine-tuned with the Softmax loss outper-
forms the PointCE loss on 11 out of the 15 data sets. On average,
the Softmax loss achieves more than +2.1% NDCG@10 (statisti-
cally significant with 𝑝 ≤ 0.05) which indicates that using the
Softmax loss produces ranking models that generalize better to
out-of-domain data. In particular, using the Softmax loss achieves
larger improvement on data sets with drastically different corpus
(e.g., TREC-COVID, BioASQ, NFCorpus), implying that fine-tuning
the model with appropriate ranking losses can enforce the model
to put less emphasis on memorization, and thus to better learn
the abstract concept of “relevance” [21], regardless of what the
underlying corpus is.

7 CONCLUSION
In this paper, we investigate the use of pretrained T5 models for
text ranking. We propose two T5 model variants that directly out-
put ranking scores. We then fine-tune these models with ranking
losses, which significantly improves ranking metrics on the MS
MARCO and the NQ data sets. We also show that this improvement
is maintained in the zero-shot setting on out-of-domain data sets.

RankT5: Fine-Tuning T5 for Text Ranking with Ranking Losses SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

REFERENCES
[1] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu,

Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. 2016.
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset.
arXiv preprint arXiv:1611.09268 (2016).

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems, Vol. 33. 1877–1901.

[3] Sebastian Bruch, Xuanhui Wang, Michael Bendersky, and Marc Najork. 2019. An
Analysis of the Softmax Cross Entropy Loss for Learning-to-Rank with Binary
Relevance. In Proceedings of the 2019 ACM SIGIR International Conference on
Theory of Information Retrieval. 75–78.

[4] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd International Conference on Machine learning. 89–96.

[5] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to
Rank: From Pairwise Approach to Listwise Approach. In Proceedings of the 24th
International Conference on Machine Learning. 129–136.

[6] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2022. PaLM: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311 (2022).

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 4171–4186.

[8] Cicero dos Santos, Xiaofei Ma, Ramesh Nallapati, Zhiheng Huang, and Bing
Xiang. 2020. Beyond [CLS] through Ranking by Generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing. 1722–1727.

[9] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2020. Modularized Transfomer-based
Ranking Framework. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing. 4180–4190.

[10] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. Rethink training of BERT
rerankers in multi-stage retrieval pipeline. In European Conference on Information
Retrieval. Springer, 280–286.

[11] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple Contrastive
Learning of Sentence Embeddings. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics, 6894–6910.

[12] Shuguang Han, Xuanhui Wang, Mike Bendersky, and Marc Najork. 2020.
Learning-to-Rank with BERT in TF-Ranking. arXiv preprint arXiv:2004.08476
(2020).

[13] Kai Hui, Honglei Zhuang, Tao Chen, Zhen Qin, Jing Lu, Dara Bahri, Ji Ma,
Jai Prakash Gupta, Cicero Nogueira dos Santos, Yi Tay, and Don Metzler. 2022.
ED2LM: Encoder-Decoder to Language Model for Faster Document Re-ranking
Inference. In Findings of the Association for Computational Linguistics: ACL 2022.
3747–3758.

[14] Rolf Jagerman, Zhen Qin, Xuanhui Wang, Michael Bendersky, and Marc Najork.
2022. On Optimizing Top-K Metrics for Neural Ranking Models. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2303–2307.

[15] Rolf Jagerman, Xuanhui Wang, Honglei Zhuang, Zhen Qin, Michael Bendersky,
and Marc Najork. 2022. Rax: Composable Learning-to-Rank using JAX. In Pro-
ceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining. 3051–3060.

[16] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems 20, 4 (2002), 422–446.

[17] Jia-Huei Ju, Jheng-Hong Yang, and Chuan-Ju Wang. 2021. Text-to-text Multi-
view Learning for Passage Re-ranking. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1803–1807.

[18] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing. 6769–6781.

[19] Omar Khattab and Matei Zaharia. 2020. Col-BERT: Efficient and Effective Passage
Search via Contextualized late Interaction over BERT. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 39–48.

[20] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur
Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton
Lee, et al. 2019. Natural questions: a benchmark for question answering research.
Transactions of the Association for Computational Linguistics 7 (2019), 453–466.

[21] John Lafferty and Chengxiang Zhai. 2003. Probabilistic relevance models based on
document and query generation. In Language modeling for information retrieval.

Springer, 1–10.
[22] Zhaoqi Leng, Mingxing Tan, Chenxi Liu, Ekin Dogus Cubuk, Jay Shi, Shuyang

Cheng, and Dragomir Anguelov. 2022. PolyLoss: A Polynomial Expansion Per-
spective of Classification Loss Functions. In International Conference on Learning
Representations.

[23] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2021. Pretrained transformers
for text ranking: BERT and beyond. Morgan & Claypool Publishers.

[24] Binsheng Liu, Hamed Zamani, Xiaolu Lu, and J Shane Culpepper. 2021. General-
izing discriminative retrieval models using generative tasks. In Proceedings of the
Web Conference 2021. 3745–3756.

[25] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Now Publishers
Inc.

[26] Jing Lu, Gustavo Hernández Ábrego, Ji Ma, Jianmo Ni, and Yinfei Yang. 2021.
Multi-stage Training with Improved Negative Contrast for Neural Passage Re-
trieval. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. 6091–6103.

[27] Yuxiang Lu, Yiding Liu, Jiaxiang Liu, Yunsheng Shi, Zhengjie Huang, Shikun
Feng Yu Sun, Hao Tian, Hua Wu, Shuaiqiang Wang, Dawei Yin, et al. 2022.
ERNIE-Search: Bridging Cross-Encoder with Dual-Encoder via Self On-the-fly
Distillation for Dense Passage Retrieval. arXiv preprint arXiv:2205.09153 (2022).

[28] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli
Goharian, and Ophir Frieder. 2020. Efficient document re-ranking for transform-
ers by precomputing term representations. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
49–58.

[29] Sean MacAvaney, Nicola Tonellotto, and Craig Macdonald. 2022. Adaptive re-
ranking with a corpus graph. In Proceedings of the 31st ACM International Confer-
ence on Information & Knowledge Management. 1491–1500.

[30] Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith Hall, Daniel
Cer, and Yinfei Yang. 2022. Sentence-T5: Scalable Sentence Encoders from Pre-
trained Text-to-Text Models. In Findings of the Association for Computational
Linguistics: ACL 2022. 1864–1874.

[31] Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernández Ábrego, Ji Ma,
Vincent Y Zhao, Yi Luan, Keith B Hall, Ming-Wei Chang, et al. 2022. Large dual
encoders are generalizable retrievers. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing.

[32] Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. 2020. Document
Ranking with a Pretrained Sequence-to-Sequence Model. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: Findings.
708–718.

[33] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-stage
document ranking with BERT. arXiv preprint arXiv:1910.14424 (2019).

[34] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, et al.
2022. Training language models to follow instructions with human feedback. In
Advances in Neural Information Processing Systems.

[35] Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin. 2021. The expando-mono-duo
design pattern for text ranking with pretrained sequence-to-sequence models.
arXiv preprint arXiv:2101.05667 (2021).

[36] Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui
Wang, Michael Bendersky, and Marc Najork. 2021. Are Neural Rankers Still
Outperformed by Gradient Boosted Decision Trees?. In International Conference
on Learning Representations.

[37] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21 (2020), 1–67.

[38] Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu,
Haifeng Wang, and Ji-Rong Wen. 2021. RocketQAv2: A Joint Training Method
for Dense Passage Retrieval and Passage Re-ranking. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. 2825–2835.

[39] Stephen Robertson and Hugo Zaragoza. 2009. The probabilistic relevance frame-
work: BM25 and beyond. Now Publishers Inc.

[40] Devendra Singh Sachan, Mike Lewis, Mandar Joshi, Armen Aghajanyan, Wen
tau Yih, Joëlle Pineau, and Luke Zettlemoyer. 2022. Improving Passage Retrieval
with Zero-Shot Question Generation. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing.

[41] Yi Tay, Vinh Q Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta,
Zhen Qin, Kai Hui, Zhe Zhao, Jai Gupta, et al. 2022. Transformer memory as a
differentiable search index. In Advances in Neural Information Processing Systems.

[42] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation of
Information Retrieval Models. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2).

[43] Ellen M Voorhees. 1999. The TREC-8 Question Answering Track Report. In
Proceedings of the 8th Text REtrieval Conference (TREC-8), Vol. 99. 77–82.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Honglei Zhuang et al.

[44] Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang,
Rangan Majumder, and Furu Wei. 2022. SimLM: Pre-training with representation
bottleneck for dense passage retrieval. arXiv preprint arXiv:2207.02578 (2022).

[45] Shitao Xiao and Zheng Liu. 2022. RetroMAE v2: Duplex Masked Auto-
Encoder For Pre-Training Retrieval-Oriented Language Models. arXiv preprint
arXiv:2211.08769 (2022).

[46] Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao. 2022. RetroMAE: Pre-
Training Retrieval-oriented Language Models Via Masked Auto-Encoder. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 538–548.

[47] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N Bennett,
Junaid Ahmed, and Arnold Overwijk. 2020. Approximate Nearest Neighbor Neg-
ative Contrastive Learning for Dense Text Retrieval. In International Conference

on Learning Representations.
[48] Yanzhao Zhang, Dingkun Long, Guangwei Xu, and Pengjun Xie. 2022. HLATR:

enhance multi-stage text retrieval with hybrid list aware transformer reranking.
arXiv preprint arXiv:2205.10569 (2022).

[49] Shengyao Zhuang, Hang Li, and Guido Zuccon. 2021. Deep Query Likelihood
Model for Information Retrieval. In European Conference On Information Retrieval.
Springer, 463–470.

[50] Shengyao Zhuang and Guido Zuccon. 2021. TILDE: Term Independent Likelihood
moDEl for Passage Re-ranking. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1483–1492.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 RankT5 Modeling
	4.1 Model structure
	4.2 Training

	5 Experiment Setup
	5.1 Data sets
	5.2 Parameter configurations

	6 Results
	7 Conclusion
	References

