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ABSTRACT
A well-known challenge in leveraging implicit user feedback like

clicks to improve real-world search services and recommender sys-

tems is its inherent bias. Most existing click models are based on

the examination hypothesis in user behaviors and differ in how to

model such an examination bias. However, they are constrained

by assuming a simple position-based bias or enforcing a sequential

order in user examination behaviors. These assumptions are insuf-

ficient to capture complex real-world user behaviors and hardly

generalize to modern user interfaces (UI) in web applications (e.g.,

results shown in a grid view). In this work, we propose a fully data-

driven neural model for the examination bias, Cross-Positional

Attention (XPA), which is more flexible in fitting complex user

behaviors. Our model leverages the attention mechanism to effec-

tively capture cross-positional interactions among displayed items

and is applicable to arbitrary UIs. We employ XPA in a novel neural

click model that can both predict clicks and estimate relevance. Our

experiments on offline synthetic data sets show that XPA is robust

among different click generation processes. We further apply XPA

to a large-scale real-world recommender system, showing signifi-

cantly better results than baselines in online A/B experiments that

involve millions of users. This validates the necessity to model more

complex user behaviors than those proposed in the literature.
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1 INTRODUCTION
Understanding user behaviors is key to improve effectiveness of

many web applications, such as web search and e-commerce rec-

ommender systems. User clicks, as one of the most common user
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Figure 1: The recommendation UI layout of Google Chrome
Web Store Homepage.

interactions in web applications, have attracted extensive interest in

research and triggered a thread of studies on click modeling. Many

click models have been proposed to explain or predict user clicks,

enabling numerous applications such as user sessions simulation,

improving ranking performance, and better evaluation metrics [8].

A common hypothesis in click models is the examination hy-

pothesis. Users are usually assumed to examine displayed items

before they click some of them, and there are often biases in the user

examination behavior that are based on extra factors, e.g., positions

on the user interface. Existing click models adopt various strategies

in examination behavior modeling. Traditional click models based

on the probabilistic graphical model (PGM) framework [8] often

describe user examination behavior in a manually specified genera-

tive process based on some assumptions. For example, the popular

Position-Bias Model (PBM) [33] assumes that the examination only

depends on the position of the item without considering interaction

between items (See Figure 2(a)). Another popular click model, Cas-

cade Model (CM) [9], assumes that a user scans items in a list from

top to bottom (See Figure 2(b)) until she finds a relevant item. Such

assumptions leave the model little flexibility to accurately capture

complex user behaviors.

https://doi.org/10.1145/3442381.3450098
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Figure 2: Typical user examination assumptions on items at
different positions.

Recently, a few neural click models are proposed [3, 4, 7] to use

distributed representations to describe user behaviors more flexibly

than the restrictive assumptions made in PGM-based models. To

the best of our knowledge, all existing neural click models make

the implicit assumption that the results are shown in a sequence

and use standard sequential neural models, including RNN [4],

LSTM [3], andGRU [7], tomodel user examination bias explicitly [7]

or implicitly [3]. This is inherited from the fact that click models

were originally developed in web search, where a ranked list of

results are presented to users.

However, modern web applications, such as recommendations

on homepages, usually have a variety of UI layouts. For example,

Figure 1 shows the layout of the homepage of Chrome Web Store,

where there are multiple modules in a list, and extensions are orga-

nized in a grid view inside each module. Although there are some

studies [42] of click models on grid view layouts, they are limited

to sequential models and cannot be easily extended to more gen-

eral layouts. Furthermore, recent studies [29, 43] show that models

based on recurrent units (including RNN, GRU, and LSTM) are

hard to train in practice and are usually not as effective as some

alternatives, such as attention [36].

The drawbacks of existing click models not only hinder effec-

tive modeling of more flexible user behaviors, but also limit their

usefulness in downstream applications. In this work, the major ap-

plication we focus on is debiasing clicks to learn a good relevance

model. This problem has been widely studied recently due to its

practical value, as numerous real-world search and recommenda-

tion systems are using debiased models [18, 23, 40, 44]. How to

model the bias is critical for the effectiveness of these methods.

Nevertheless, most of them are generally built upon simple existing

click models, typically the PBM model. For example, most unbi-

ased learning to rank work [2, 21, 31, 40] treats the position bias as

the propensity of observing relevance and debiases clicks using in-

verse propensity weighting (IPW) based methods. Other work [22]

feeds the position of a document to the model but separates it from

the rest of document features. Some recent works explore more

complex models [19, 35], but are still limited to sequences. The

performance and applicability of these approaches are constrained

by the limitations of the underlying click models.

In this work, we propose Cross-Positional Attention (XPA) to

model user examination bias, mitigating the limitations of existing

click models. Our model assumes that the examination probability

of an item not only depends on its own position, but could also

depend on all other positions and the relevance of corresponding

items (See Figure 2(c)). The assumption is flexible enough to capture

any complex user behaviors on arbitrary layouts. Moreover, the

strong capacity of attention mechanism allows our proposed model

to produce more accurate prediction than sequential neural models

like LSTM, even on simulated data sets where users are assumed to

follow a sequential browsing behavior.

The contributions of our work are:

• We propose a novel click model using cross-positional at-

tentions (XPA). It is capable of modeling more flexible user

behaviors than existing models, and can be applied to any

user interface layouts.

• We show that XPA is effective and robust among different

data generation processes of user click behaviors via syn-

thetic experiments.

• We apply XPA to debias clicks in a real-world large-scale

recommender system. Online A/B experiments involving

millions of users validate the effectiveness of XPA and the

necessity to model more flexible user behaviors and user

interface layouts.

The rest of the paper is organized as follows. We review related

work in Section 2. We describe preliminaries of click models in

Section 3 and the proposed XPA model in Section 4. In Section 5,

we validate the effectiveness of XPA on both offline synthetic data

sets and online A/B experiments on a large-scale recommender

system. We conclude this paper in Section 6.

2 RELATEDWORK
To understand user behaviors and estimate the relevance of items,

clickmodels have been extensively studied, mainly forweb search [8].

Most of the existing click models in the probabilistic graphical

model (PGM) framework represent user behaviors as a sequence

of observable or hidden random variables. Based on the classical

Position-Bias Model [33] and Cascade Model [9], many click models

are proposed as their extensions. Models including User Browsing

Model (UBM) [13], Dynamic Bayesian Network (DBN) [6], Click

Chain Model (CCM) [15], and Dependent Click Model (DCM) [16]

have been proposed to cope with the limitation that CM only allows

one click. Partially Sequential Click Model (PSCM) [37] is one of

the few work that considers non-sequential examination behavior

motivated by eye-tracking experiments, but the non-sequential be-

havior is still studied on sequential data (i.e., users can browse back

and forth on a sequence). As various layouts in web applications

emerge in recent years, there are also models specifically developed

for each type of layout. For example, a click model [25] is devel-

oped for vertical results with different item types on mobile search

to take into account vertical bias. Another click model [41, 42]

is proposed for grid view layout in image search, still based on

a sequential user browsing assumption. All dependencies in the

above PGM-based click models are designed manually, which are

likely to miss key aspects of complex and flexible real-world user

behaviors. Diaz et al. [11] study mouse movement modeling in

arbitrary layouts, which could potentially be used to model user

examination behavior. However, their model cannot be used for

relevance prediction.
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Recently, some neural network based approaches have been

proposed for better user modeling. User behaviors are often rep-

resented as vector states instead of binary random variables to

better describe complex behavioral patterns. Borisov et al. [3] first

attempt to use neural networks to model users’ query level interac-

tion sequence using an LSTM model. The Click Sequence Model

(CSM) [4] maintains an encoder-decoder framework with an RNN

backbone to predict the order in which a user will interact with

search engine results. The Context-Aware Click Model (CACM) [7]

leverages GRU to model behaviors among search sessions. Most

existing neural click models are still constrained by the underlying

recurrent units, such as LSTM, with the implicit assumption of

sequential browsing behaviors, which can be limited in practice.

Also, inherited from traditional click models, existing neural click

models typically require exact query and document identifier for

encoding or retrieving certain information. This can be very inef-

fective in practice especially for recommender systems where the

interactions for a specific user-document pair is extremely sparse.

An important application of click models is to tackle the inher-

ent bias in user click data when training a relevance model from

click logs. This is an important research topic in search and recom-

mendation recently [1, 2, 14, 21, 31, 35, 38, 40]. Unbiased learning

works are often built upon existing click models, as many click

models are based on the examination hypothesis to cope with the

position bias problem [33]. However, virtually all existing work

depends on PBM [1, 2, 21, 31, 38–40], with a very recent exception

that explores Cascade Model [35]. Thus, the performance of unbi-

ased learning is hindered by the underlying limitations of the click

models mentioned above. Our model is much more flexible than

PBM in capturing complex user behaviors and can be seamlessly

plugged in many existing unbiased learning frameworks to achieve

better performance. We leverage the attention [36] mechanism to

effectively model flexible interactions. Attention has been used in

some recent learning to rank work [28, 30, 32], but its application

to debiasing implicit feedback has not been explored.

It is not straightforward to directly incorporate existing click

models into unbiased learning models. A common reason is because

traditional click models developed for web search often use the

exact identifiers of queries and documents to encode or retrieve

certain information. Some recent neural click models often inherit

this setting. For example, Borisov et al. [3] estimate the relevance

of a query-document pair using the click ratio (number of clicks

divided by number of impressions) of the exact query-document

pair from search logs. Borisov et al. [4] represent a query using a

2
𝑁

(𝑁 is the number of positions) dimensional vector, where each

entry counts the number of times a click pattern was observed in

query sessions for the exactly same query. Such a counting method

is not applicable for unseen query-document pairs, and can be

highly unreliable when clicks are extremely sparse as in many real-

world web applications. Hence, we use feature vectors instead of

identifiers for representations in our relevance component.

A study [27] also explores simultaneously modeling complex

user behavior and relevance ranking. It is based on reinforcement

learning in the online setting, while our focus is on learning rele-

vance models from offline logs.

3 PRELIMINARIES
In this section, we give the formal description of a click model, the

commonly used examination hypothesis and our problem formula-

tion.

3.1 Click Model
We define a session 𝑠𝑖 as a set of items along with their positions

and clicks 𝑠𝑖 = (X𝑖 , P𝑖 , c𝑖 ). X𝑖 = {x𝑖 𝑗 }𝑚𝑗=1 represents the set of items

displayed in the 𝑖-th session, where each item is represented by a

feature vector x𝑖 𝑗 ∈ R𝜈 . P𝑖 = {𝑝𝑖 𝑗 }𝑚𝑗=1 is a set of integer indices
representing the positions of the displayed items in the 𝑖-th session,

where 𝑝𝑖 𝑗 is a unique identifier of item 𝑗 ’s position in the 𝑖-th session.

For generality, we do not assume any relative proximity between

positions based on their values (i.e., position 2 is not necessarily

closer to position 1 than position 20), although some sequential

models may rely on such an assumption. c𝑖 ∈ {0, 1}𝑚 is a binary

vector of length𝑚 where the 𝑗-th element 𝑐𝑖 𝑗 indicates whether

item 𝑗 is clicked in this session. Notice that we do not aim to model

the order of user clicks, hence the order of clicks is not included in

our formalization.

A general click model can be trained from a set of collected ses-

sions STrain = {𝑠𝑖 }𝑛𝑖=1 with user click logs and learn to estimate the

conditional probability of clicks P(c|X, P) for any session (without

collected clicks) given the items X and their positions P.

3.2 Relevance-Examination Factorization
Many click models [10, 13, 15, 16, 34] follow the examination hy-

pothesis [9] where the click probability of an item 𝑗 can be factorized

into two elements: the tendency of users examining the item, and

the relevance (or attractiveness) of the item [8]. The relevance of

the item is usually thought to be position-agnostic and is only cor-

related with the item’s own features x𝑗 , whereas the examination

factor of an item would be correlated with the item’s position 𝑝 𝑗
and sometimes with other items’ relevance and positions in the

session. In fact, the examination factor is related to user browsing

behaviors and is generally regarded as a bias when one uses clicks

as relevance labels to train a relevance model.

We formalize this factorization by modeling the conditional click

probability of the item 𝑗 in a session 𝑠 = (X, P, c) as:

P(𝑐 𝑗 |X, P) = 𝑓

(
𝑔(𝑟 (x𝑗 )) + ℎ(𝑒 (x𝑗 , 𝑝 𝑗 ,X, P))

)
(1)

where 𝑟 (x𝑗 ) is the relevance score of item 𝑗 and 𝑒 (x𝑗 , 𝑝 𝑗 ,X, P) is
the examination score of item 𝑗 in this session. 𝑓 (·), 𝑔(·) and ℎ(·)
are univariate transformation functions. In this paper, we also use

a short-hand notation 𝑐 𝑗 to represent the predictive probability

P(𝑐 𝑗 |X, P) estimated by a click model.

A click model with a factorization in Equation (1) is more useful

in many applications. For example, one important application is to

mitigate the position bias. Some positions on a web page (usually

those at the top) have larger probabilities of being examined by

users. Hence, items that are more often displayed in these posi-

tions will be clicked more. If we directly train a ranking model

based on click logs, the model would be affected by position bias.

Instead, one can train a click model with the above factorization and
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only leverage the relevance module 𝑟 (·) to estimate the position-

agnostic relevance of items and rank accordingly, which is popular

in industrial applications [17, 44].

Connection to existing click models. In a probabilistic click

model where each item can only be examined once, 𝑟 (·) and 𝑒 (·)
are usually defined as the probability of item 𝑗 being relevant P(𝑅 𝑗 =

1|x𝑗 ) and the probability of item 𝑗 being examined P(𝐸 𝑗 = 1|X, P)
respectively. By setting 𝑓 (𝑥) = exp(𝑥) and 𝑔(𝑥) = ℎ(𝑥) = log(𝑥)
we can obtain that

P(𝑐 𝑗 |X, P) = P(𝑅 𝑗 = 1|x𝑗 )P(𝐸 𝑗 = 1|X, P)

which is a common assumption in existing clickmodels. Here𝑅 𝑗 = 1

indicates the event that a user finds item 𝑗 relevant, and 𝐸 𝑗 = 1

indicates the event that a user examines item 𝑗 .

3.3 Problem Formulation
Our aim is to develop a click model which can be trained merely

with click logs but can be used for both predicting clicks from a

given item layout and predicting item relevance without the bias

in the click data. We focus on click models with the relevance-

examination factorization as described above, which provides a

model structure abstraction that can naturally fulfill these two

tasks. We formalize our problem as:

Problem 1. Given a set of sessions with click logs STrain = {𝑠𝑖 }𝑛𝑖=1,
we aim to train a click model with the structure as Equation (1), s.t.

(1) Given a set of items with their feature vectors X and their posi-
tions P, the model can estimate the probability 𝑐 𝑗 = P(𝑐 𝑗 |X, P)
of whether a user would click each item x𝑗 ∈ X;

(2) In addition, the relevance scorer 𝑟 (·) of the model can be esti-
mated and used to rank any set of items based on their feature
vectors X.

We note that some other studies [22] on similar problem do

not adopt the factorization of relevance and examination in their

models, but instead feed a constant position index for the relevance

prediction/ranking task during inference. We do not adopt this

methodology due to the black-box nature of the model. It is difficult

to verify or fully understand the model behavior during inference,

and it is hence not favored for real-world applications.

4 CROSS-POSITIONAL ATTENTION
In this section, we introduce a neural click model with a cross-

positional attention mechanism to model interactions between dif-

ferent positions in each session.

We adopt the relevance-examination factorization of clicks to

learn a relevance scorer 𝑟 (·) and an examination scorer 𝑒 (·) re-
spectively and obtain the estimated click probability according to

Equation (1). We assume that the examination score of item 𝑗 could

be correlated with all items’ features X and positions P in the same

session. Notice that this is a more general assumption compared

with existing models where the examination score of item 𝑗 is only

related to its position 𝑝 𝑗 or is related to “previous items” in a given

session. We argue that our click model can better handle various

complicated real-world scenarios where the layout of positions is

not necessarily a sequence and/or users do not necessarily examine
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Figure 3: Graphical illustration of our proposed model.

in order. Figure 3 provides a graphical illustration of our proposed

model. We describe the details below.

4.1 Input Representation
The input of the model consists of the feature vectors of all items X
in the session as well as their positions P. The 𝑗-th item can directly

be represented by its feature vector x𝑗 . Its position 𝑝 𝑗 , which is

usually an index, can be represented by a corresponding embedding

vector p𝑗 . The position embedding can be randomly initialized and

then trained end-to-end with the model.

Notice that an alternative is to adopt a fixed sinuous embedding

to instantiate position embedding, as reported in [36]. However, we

do not find substantial improvement from such an instantiation in

our experiments.

4.2 Relevance Scorer
The relevance scorer 𝑟 (·) (See the right module in Figure 3) only

takes the feature vector of a single item x𝑗 as input. We simply in-

stantiate the relevance scorer by an 𝐻 -layer feed-forward network:

𝑟 (x𝑗 ) = FFNN

(
x𝑗 |W1,...,𝐻 , b1,...,𝐻

)
(2)

where each layer is a fully-connected dense layer parameterized by

Wℎ and bℎ , and the activation function is the Rectifier [26].
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4.3 Cross-Positional Attention
In a real-world scenario, whether a user examines a specific item

can be related to many factors: the position of this item, relevance

of neighboring items, etc. Based on this intuition, we introduce a

cross-positional attention layer to leverage signals from all items

at all positions in the same session.

Formally, we derive a cross-positional attention matrix A where

the element at ( 𝑗, 𝑘) is derived by a scaled softmax:

𝑎 𝑗𝑘 =
exp(𝜆p⊤

𝑗
p𝑘 )∑

𝑘′ exp(𝜆p⊤𝑗 p𝑘′)
(3)

where 𝜆 is a trainable scalar variable, not a hyper-parameter [24].

The attention weight 𝑎 𝑗𝑘 reflects the proximity between position

𝑝 𝑗 and position 𝑝𝑘 and measures the influence and interactions

between examination or click behaviors between these positions.

Typically, positions that are visually close to each other would have

higher attention weights.

For the item at position 𝑝 𝑗 , we derive both the attended item

representation x̃𝑗 and the attended position representation p̃𝑗 by
taking the attention weighted sum of item/position representation

from other positions:

x̃𝑗 =
𝑚∑
𝑘=1

𝑎 𝑗𝑘x𝑘 , p̃𝑗 =
𝑚∑
𝑘=1

𝑎 𝑗𝑘p𝑘

These attended representations aggregate signals from other posi-

tions weighted by how close they are to position 𝑝 𝑗 . They reflect

how likely a neighboring item is relevant or will be examined. These

signals will be used in the examination scorer of item 𝑗 to model

the correlation of user behaviors between these positions.

4.4 Examination Scorer
We first introduce a position-based examination scorer 𝑒pos (·) in-
stantiated by a feed-forward network (See the left module in Fig-

ure 3). For each item 𝑗 , the scorer only takes its position embedding

p𝑗 as input to provide an examination score. The examination scorer

can be written as:

𝑒pos (p𝑗 ) = FFNN

(
p𝑗 |W′

1,...,𝐻 , b
′
1,...,𝐻

)
(4)

Similarly, each layer is a fully-connected dense layer parameterized

by W′
ℎ
and b′

ℎ
, and the activation function is the Rectifier [26].

The examination score 𝑒pos (p𝑗 ) only utilizes the signal from the

position of item 𝑗 . However, signals from other items and their

positions can also have an impact on users’ examination behavior

on item 𝑗 . For example, when there is a highly relevant item at a

neighboring position of item 𝑗 , users may be more likely to examine

item 𝑗 as they are attracted by the relevant item.

We can incorporate these signals by utilizing the attended item

representation x̃𝑗 and attended position representation p̃𝑗 as they
aggregate other items and their positions weighted by the cross-

positional attention. We feed the attended position representation

to the position-based examination scorer to depict to what extent

neighboring positions will be examined, denoted as 𝑒pos (p̃𝑗 ). We

also feed the attended item representation to the relevance scorer

to estimate how likely neighboring items will be clicked, denoted

as 𝑟 (x̃𝑗 ). Then we combine both scores with the original position-

based examination scores to obtain the cross-positional attention-

based examination score 𝑒cross-pos (p𝑗 , x̃𝑗 , p̃𝑗 ), defined as:

𝑒cross-pos (p𝑗 , x̃𝑗 , p̃𝑗 ) = 𝑒pos (p𝑗 ) +𝑤𝑒 · 𝑒pos (p̃𝑗 ) +𝑤𝑟 · 𝑟 (x̃𝑗 ) (5)

where 𝑤𝑒 and 𝑤𝑟 are not hyper-parameters, but two weighting

variables to be automatically trained.

Discussion. An alternative option is to apply the cross-positional

attention mechanism to relevance scores of all other items 𝑟 (x𝑘 )
instead of their original feature representation x𝑘 . We tried this

design but failed to achieve good performance. A possible explana-

tion is that the gradient to adjust the relevance scorer network 𝑟 (·)
would be distributed based on attention values, which may not be

well-trained in the early stage of training.

Another possible design is to adopt a more complicated attention

mechanism, such as the multi-head attention [36] and/or multiple

layers of stacked attentions. However, none of these complicated

mechanisms show significantly better results than the simple at-

tention mechanism presented above. This could mean lack of long-

range dependency in users’ examination behaviors.

4.5 Click Probability
For item 𝑗 , we can combine the examination and relevance scores

to obtain the click probability. We follow the factorization in Equa-

tion (1) and set the univariate transformation 𝑓 (·) to the sigmoid

logistic function 𝜎 (𝑥) = exp(𝑥)
1+exp(𝑥) , which ensures the output to be a

probability in [0, 1]. The other two univariate transformation func-

tions 𝑔(·) and ℎ(·) are simply set to identity for simplicity. More

formally, we have

𝑐 𝑗 = 𝜎
(
𝑟 (x𝑗 ) + 𝑒cross-pos (p𝑗 , x̃𝑗 , p̃𝑗 )

)
(6)

Notice that if we only take the position-based examination scorer

𝑒pos (·) and plug it into the same equation, we will have a model

merely based on position bias that is similar to themodels in existing

papers [17, 44].

4.6 Training
We train the model with cross-entropy loss applying to the marginal

click probability of each item. For a training set STrain of 𝑛 sessions

with clicks collected, we can optimize the following loss function:

𝐿 = −
𝑛∑
𝑖=1

𝑚∑
𝑗=1

[
𝑐𝑖 𝑗 log(𝑐𝑖 𝑗 ) + (1 − 𝑐𝑖 𝑗 ) log(1 − 𝑐𝑖 𝑗 )

]
(7)

Remarks. If the desired relevance prediction objective is to achieve
the best ranking performances, there are plenty of studies [2, 19, 21,

40] on unbiased learning to rank, which usually train themodel with

an unbiased ranking loss function instead of a cross-entropy loss. It

is worth noting that many of these studies adopt a model structure

with a similar relevance-examination factorization. Hence, one can

seamlessly plug in our examination scorer with cross-positional

attention into the unbiased learning to rank framework and train

the model with ranking losses.
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5 EXPERIMENTS
In this section, we present the experimental results to evaluate the

effectiveness of XPA on both offline synthetic experiments and a

real-world recommender system with millions of users.

5.1 Data Sets
We conduct experiments on two data sets: one with synthetic click

data and another with real click data.

YAHOO. Yahoo! Learning to Rank Challenge data [5] is a public

learning-to-rank data set. We use the Set1 of the original data set,

which contains 19,944 queries in the training partition, 2,994 and

6,983 queries in the validation and test partition respectively. There

are on average 20+ documents in each query. Each document is

represented by a numerical feature vectors with up to 700 features

with a normalized range of [0, 1].
For each query, documents are evaluated by human annotators

and labeled with a 5-level relevance label from 0 to 4 where 4 is the

most relevant and 0 is irrelevant. However, user click data is not

provided in this data set. Therefore, we generate synthetic sessions

with clicks based on various models, similar to many work that

studies unbiased learning [2, 35]. More details are provided below.

Chrome Web Store (CWS). We also perform experiments on a

data set collected from ChromeWeb Store
1
user logs

2
. Each session

logs a set of extensions displayed to the user, their positions in the

layout, and the clicked extensions. An example of CWS homepage

layout is shown in Figure 1, where 8 extensions are organized

in a grid view as a module and multiple modules are presented

vertically. We extract several numerical and categorical features

for each extension, such as number of impressions in the last two

weeks. The same set of features are used for all compared methods.

For each categorical feature, we learn an embedding vector. We

concatenate all the embedding vectors with the numerical feature

vector as the representation of the item. We collect 20 days of

sampled logs as training data and the following 9 days of sampled

logs as test data.

5.2 Click Simulation
For YAHOO data set with no user click data available, we generate

synthetic sessions with clicks for training and evaluation. Similar

to previous studies [2, 21], we first train a Ranking SVM [20] as the

initial ranker based on 1% of the labeled training data. We then use

the initial ranker to rank all the items in each query and use the

ranking starting from 1 as the position feature 𝑝 𝑗 for each item 𝑗 .

Based on the initial ranking, we simulate a user to generate click

sessions based on the following models.

Position biasmodel (PBM). In this model [34], users are assumed

to examine each item independently with a probability only related

to its position. We define the examination probability as

P(𝐸 𝑗 = 1|𝑝 𝑗 ) =
1

𝑝 𝑗

1
https://chrome.google.com/webstore

2
Data collected and used is covered by the Google Privacy Policy and is used for

product improvements for Chrome Web Store.

If an item is examined, users will determine its relevance based on

the ground-truth relevance label (denoted as 𝑦 𝑗 ) but with certain

noise. We define the probability that users consider item 𝑗 relevant

as

P(𝑅 𝑗 = 1|𝑦 𝑗 ) = 𝜖 + (1 − 𝜖) 2
𝑦 𝑗 − 1

2
𝑦max − 1

(8)

where 𝜖 = 0.1 is a noise constant and 𝑦max = 4 is the maximum

possible label. Users will click an item once they examine the item

and find it relevant. Hence, we can calculate the probability of an

item being clicked by

P(𝑐 𝑗 = 1|𝑝 𝑗 , 𝑦 𝑗 ) = P(𝐸 𝑗 = 1|𝑝 𝑗 ) · P(𝑅 𝑗 = 1|𝑦 𝑗 )

Dependent click model (DCM). The dependent click model [16]

is adapted from the popular cascade model [10] which assumes that

a user would examine the items based on the displayed sequence

one by one. Once the user finds a relevant item, the user would

click the item. With a probability P(𝐸 𝑗+1 = 1|𝑐 𝑗 = 1), the user

would continue to examine the following item. Otherwise the users

would end the session. We simulate the user behavior by going

through the items based on the initial ranking. We assume that a

user finds an item to be relevant with the probability as defined in

Equation (8). We set the probability to resume the session after a

click P(𝐸 𝑗+1 = 1|𝑐 𝑗 = 1) as a constant 0.1.

Click propagation model (CPM). We also propose a novel click

model to simulate users who do not follow the sequential browsing

behavior. Generally, we still assume that a user follows PBM to

browse, examine and click items. However, if the item 𝑗 is clicked,

the user will start a “subprocess” to examine other items 𝑘 based

on the following probability:

P(𝐸𝑘 | 𝑗 = 1|𝑝 𝑗 , 𝑝𝑘 ) =
1

|𝑝𝑘 − 𝑝 𝑗 |
where 𝐸𝑘 | 𝑗 represents the event that the user examines item 𝑘

after clicking item 𝑗 . If the user finds any item relevant (based on

Equation (8)) during this subprocess, she will also click the item (but

not triggering another round of examination). When the subprocess

is over, the user would go back to continue the PBM behavior. An

item 𝑗 clicked by multiple times is still logged as 𝑐 𝑗 = 1.

The model is similar to user browsing model [13] but the user

behavior does not follow the sequential examination process.

5.3 Experiment Setup

Comparing methods. We compare the performance of the fol-

lowing methods:

• No-Position (NoPos). A naïve baseline is to directly train the

relevance scorer 𝑟 (·) as described in Equation (2) based on

user clicks without using any position information. Since

user click behavior is usually related to item position, the

learned model is likely to be biased.

• Position-Based Model (Pos). A model structure similar to [17,

44], where the position-based examination scorer 𝑒pos (·)
is adopted to score item 𝑗 only based on its own position

𝑝 𝑗 . The examination score and the relevance score are then

added and fed into a sigmoid logistic function to obtain the

click probability estimation.

https://chrome.google.com/webstore
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• LSTM-Based Sequential Model (LSTM). A recent model [19]

feeds a sequence of item feature vectors into LSTM and

derives examination scores based on LSTM output at each

position. We implement a variation following our factoriza-

tion of relevance and examination. The examination scorer

is instantiated by a feed-forward network built on the LSTM

output vectors. Unlike the original model, this variation sup-

ports multiple clicks in a session. For the YAHOO data set,

we construct the sequence based on initial ranking; for the

CWS data set, we construct the sequence by a left-to-right

order within each row, and a top-down order for all the rows.

Notice that due to different configurations of click simula-

tion, the performances are not comparable to those reported

in [19].

• Cross-Positional Attention Model (XPA). This is our proposed
model in Section 4 which utilizes a cross-positional attention

mechanism to leverage signals from all items and positions.

Evaluationmethodology. We train all the models with click data

and evaluate the model performances on two tasks: click prediction

and item relevance prediction.

For the click prediction task, we apply each model on the hold-

out test partition of the data set to predict which items would be

clicked based on their features and positions. Wemeasure the model

performance by both loglikelihood and perplexity.

For the item relevance prediction task, we used the relevance

scorer 𝑟 (·) of each model to predict the relevance of each item

from the hold-out test set based on its feature vector x𝑗 . For the
YAHOO data set, we evaluate the performance by NDCG@𝑘 where

𝑘 ∈ {1, 5, 10} based on the human judged relevance labels. For the

CWS data set, we perform online A/B experiments by serving each

model to a small percentage of randomly selected users. We use

Click-Through Rate (CTR) as our online evaluation metric.

Parameter configuration. For the feed-forward network in the

relevance scorer (Equation (2)), we use a 3-layer network with hid-

den layer dimensions as 1024, 512 and 256. For the feed-forward

network in the examination scorer (Equation (4)), we use a 3-layer

network with hidden layer dimensions as 128, 64 and 32. All item

features are transformed by a log1p [45] transformation. We apply

batch normalization and dropout to both feed-forward networks

where the dropout rate is set to 0.5. We set the dimension of embed-

ding vectors for position features and other categorical features to

100. All models are trained with the AdaGrad [12] optimizer with

learning rate tuned on the validation set.

5.4 Results on Simulated Click Data
We first evaluate all the methods on the YAHOO data set where the

click data is simulated.

Click prediction. Table 1 shows the performance comparison of

the click prediction tasks. For all simulated click models on the

YAHOO data set, both LSTM and XPA show better performance

than NoPos and Pos. This aligns with our expectation as both

methods take the correlation between clicks on different positions

into account.

We also notice that LSTM achieves comparable performancewith

XPA when clicks are simulated by PBM and DCM. This is because

Table 1: Click prediction performance comparison on the
YAHOO data set. Results that are statistically significantly
better (𝛼 = 0.05) than Pos are marked with an asterisk (∗)
and those significantly better than LSTM are marked with a
dagger (†). The best results are bolded.

Click model Method Loglikelihood Perplexity

PBM

NoPos -0.1365 1.1462

Pos -0.1246 1.1327

LSTM -0.1219∗ 1.1297∗

XPA -0.1227
∗

1.1305
∗

DCM

NoPos -0.1353 1.1449

Pos -0.1218 1.1295

LSTM -0.1198
∗

1.1273
∗

XPA -0.1195∗ 1.1269∗

CPM

NoPos -0.2267 1.2545

Pos -0.2184 1.2441

LSTM -0.2153
∗

1.2373
∗

XPA -0.2117∗† 1.2358∗†

Table 2: Relevance prediction performance comparison on
the YAHOO data set (%). Results that are statistically signifi-
cantly better (𝛼 = 0.05) than Pos are marked with an asterisk
(∗) and those significantly better than LSTM aremarkedwith
a dagger (†). The best results are bolded.

Click model Method NDCG@1 NDCG@5 NDCG@10

PBM

NoPos 63.75 66.75 71.49

Pos 66.34 69.13 73.62

LSTM 67.03 68.63 73.14

XPA 66.81 69.57∗† 73.85†

DCM

NoPos 64.05 66.45 71.11

Pos 65.50 67.60 72.13

LSTM 65.15 67.29 71.86

XPA 67.08∗† 68.68∗† 73.07∗†

CPM

NoPos 64.67 67.78 72.50

Pos 67.82 70.26 74.54

LSTM 67.08 68.82 73.13

XPA 67.95† 70.61∗† 74.86∗†

the sequential model structure of LSTM is capable of capturing

the examination patterns in these two models, where users either

examine each position independently or browse in a sequence.

However, when the simulated user browsing behavior does not

follow the sequential order like in CPM, our proposed XPA achieves

significantly better performance than LSTM and other baselines. In

real-world applications, especially when the layout is not a ranked

list, there is no guarantee that users would strictly follow a specific

sequential order to browse different positions. Therefore, LSTMmay

not achieve satisfying performances on such real-world data sets.

Relevance prediction. A more practically useful task is to utilize

the relevance scorer module of the click model to estimate the

relevance of each item. Since the ground-truth relevance labels are
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Table 3: Click prediction performance comparison. Results
that are statistically significantly better (𝛼 = 0.05) than
Pos are marked with an asterisk (∗) and those significantly
better than LSTM are marked with a dagger (†). The best re-
sults are bolded.

Data set Method Loglikelihood Perplexity

CWS

NoPos -0.1044 1.1100

Pos -0.1019 1.1072

LSTM -0.1004
∗

1.1057
∗

XPA -0.0978∗† 1.1027∗†
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Figure 4:Model perplexity comparison at different positions
on the CWS data set.

provided in YAHOO, we can rank the items in the test data set based

on the relevance scorer of each model and evaluate the ranking

performance. Table 2 shows the results on YAHOO data set with

different click simulation models.

Pos, LSTM and XPA have similar performance with simulated

clicks from PBM. The performance of XPA and LSTM is not sig-

nificantly better than Pos, since they are better at modeling cross-

positional correlation of clicks, while the examination probability

of an item only depends on its own position in PBM.

When the simulated clicks are generated fromDCMor CPM, XPA

significantly outperforms all the other baselines including Pos and

LSTM in terms of NDCG@5 and NDCG@10. The results illustrate

the strength of XPA in the application of debiasing clicks when

the user examination behaviors are complex with cross-positional

correlation. An additional advantage of XPA is that the relevance

component 𝑟 (·) of XPA can be trained with additional signals as it

is also used in modeling user examination behaviors. This might

explain why XPA outperforms LSTM even with the sequential click

simulation model DCM. On the other hand, LSTM again fails to

achieve better performance with CPM, showing that complex user

behaviors which do not strictly follow the sequential assumption

can cause severe bias in relevance prediction.

Overall, XPA achieves comparable or significantly better perfor-

mance than baselines with all the three click simulation models.

The results verify the generalizability and robustness of XPA which

can be universally applied to data with different user click patterns

without modification.

Table 4: Online experiments on the CWS data set. Rela-
tive increase in Click Through Rate compared with NoPos is
shown. Results that are statistically significantly better (𝛼 =

0.05) than NoPos are marked with an asterisk (∗) and those
significantly better than Pos are marked with a dagger (†).
The best result is bolded.

Method NoPos Pos XPA

Click Through Rate 0.00% 5.58%
∗ 11.80%∗†

1 9 17 25 33
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Figure 5: Visualizing the cross-positional attentionmatrixA
learned from the CWS data set.

5.5 Results on Real-World Data
We move forward to compare the model performances on the CWS

data set, which contains real user click logs reflecting the more

complicated real-world user behavior.

Click prediction. We first measure the predictive power of each

model on the click data from the hold-out test partition of the

CWS data set. Table 3 summarizes the performance. As one can

observe, XPA significantly outperforms all the other baselines on

both loglikelihood and perplexity. This result shows that the cross-

positional attention mechanism provides larger model capacity to

better model complex user behaviors in real-world.

We further slice the CWS data based on positions and plot the

perplexity of each model. Figure 4 plots the results as well as the

95% confidence intervals. We notice that XPA outperforms the

other two baselines on almost all positions significantly. The gap is

particularly large for specific positions in each module like position

1, 2 and 9, 10. We also notice that these positions have larger overall

perplexity from all models, indicating that they are more difficult

for click prediction.

Online relevance prediction. We cannot run offline evaluation

of relevance prediction on the CWS data set as there is no human

judged relevance labels. Instead, we deploy the compared models

in online A/B experiments. We used the relevance scorer to rank

a candidate set of extensions and serve the top results on “Recom-

mended for You” module on CWS homepage (See Figure 1). We only
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perform experiments with Pos and XPA due to limited resources —

although LSTM achieves better click prediction performance on the

CWS data set, we observe that the advantage in the click prediction

task does not necessarily translate to the relevance prediction task,

where LSTM suffers in general (Table 2). The experiments were run

for 7 days and the performances are measured by CTR. Due to the

proprietary nature of the data, we only report relative improvement.

The results are shown in Table 4.

It can be observed that both Pos and XPA perform significantly

better than NoPos. This shows the importance of removing po-

sitional bias when training relevance models on click logs. More

importantly, XPA achieves a 11.80% improvement relative to NoPos,

which is significantly higher than the performance of Pos. The

results show that XPA can more effectively model and mitigate the

bias in click logs introduced by complex user behavior.

Visualization of cross-positional attention. We visualize the

cross-positional attention matrix A from the XPA model trained for

the CWS data set, as illustrated in Figure 5. We only show the sub-

matrix for the top-40 positions. It can be clearly observed that there

are dense interactions formed between every 4 or 8 positions. For

example, there are very dense interactions between position 1 to 8,

and then dense interactions between 9 to 12 etc. An explanation is

that users tend to click itemswithin the samemodule after they click

a specific item. The pattern aligns with the current CWS homepage

layout where every module shows 8 extensions on the homepage.

The connection between position 9-12 and position 13-16 is not

dense probably due to the screen size constraint which does not

show the entire module on the homepage. It is also worth noting

that this pattern repeats itself with almost equivalent strength

even in positions in the bottom side of the homepage. For example,

similar dense interaction block also appears between position 33 to

40. This shows the significance of this user behavior pattern and

its possible bias impact on the click data.

5.6 Ablation Study
We also perform an ablation study of our proposed model on both

synthetic and real-world data sets. We run experiments with two

variations of our model: one only using the attended position rep-

resentation (XPA Pos) and the other only using the attended item

representation (XPA Item). We then compare their performances as

well as the full XPA model performance with the Pos baseline. Rela-

tive improvements on the click prediction task (measured by loglike-

lihood) and the relevance prediction task (measured by NDCG@5)

are reported in Figure 6.

For the click prediction task, as illustrated in Figure 6(a), both

the XPA Pos and XPA Item variations significantly outperform the

Pos baseline on the CWS data set. This shows that both attended

representations improve the performance. The full XPA model

further outperforms the two variations on the CWS data set, which

shows the power of simultaneously leveraging both signals in the

model. On the synthetic data set, we can also observe that both

variations seem to improve the performance.

Figure 6(b) plots the results of the relevance prediction task. The

XPA Item variation which only uses the attended item represen-

tation always outperforms the Pos baseline, whereas the XPA Pos
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Figure 6: Ablation study with XPA variations that only use
the attended position representation (XPA Pos) or the at-
tended item representation (XPA Item) respectively. Perfor-
mances on both click prediction and relevance prediction
tasks are plotted. PBM, DCM and CPM stand for the click
simulation models on the YAHOO data set.

variation does not. Given that XPA Pos still achieves better perfor-

mance in the click prediction task, the results might suggest that the

relevance scorer could be over-corrected by the attended positional

representation in the current model for ranking tasks. As mentioned

earlier, more sophisticated unbiased learning to rank models can be

further developed on top of our click model to optimize relevance

ranking performance.

6 CONCLUSION
In this paper, we propose a cross-positional attention mechanism

to model user examination bias in clicks. It considers the correla-

tion between clicks on a specific item and other items in the same

session, including their relevance and positions. The model does

not make restrictive assumptions about UIs or user behaviors and

is thus capable of capturing a variety of user behavior patterns with

arbitrary layouts. In addition, the relevance scorer component can

be directly used to estimate the relevance of any item. In our exper-

iments, we show that our model can better mitigate the positional

and cross-positional bias in click logs and learn a more effective

relevance scorer on multiple synthetic data sets and a real-world

recommendation data set.

There are several interesting future research directions based

on our work. First, in addition to position signals, there could be

other ones affecting user click behaviors. For example, the date and

time information and users’ browsing history [7] are some other

possible contributing factors. How to incorporate such signals and

mitigate the bias they introduce to relevance prediction would be

an interesting direction to explore. Second, how to design a more

efficient attention mechanism is also worth studying. The current

attention mechanism models the correlation between every pair of

items, which is proportional to𝑚2
where𝑚 is the number of items

in each session. If we have more information about the layout and

relative relations between positions, it is possible to simplify the

attention layer for better performance. Third, a natural extension is

to study how to leverage the proposed click model to build a better

unbiased learning to rank model.
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