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ABSTRACT
Data annotation bias is found in many situations. Often
it can be ignored as just another component of the noise
floor. However, it is especially prevalent in crowdsourcing
tasks and must be actively managed. Annotation bias on
single data items has been studied with regard to data diffi-
culty, annotator bias, etc., while annotation bias on batches
of multiple data items simultaneously presented to anno-
tators has not been studied. In this paper, we verify the
existence of “in-batch annotation bias” between data items
in the same batch. We propose a factor graph based batch
annotation model to quantitatively capture the in-batch an-
notation bias, and measure the bias during a crowdsourcing
annotation process of inappropriate comments in LinkedIn.
We discover that annotators tend to make polarized annota-
tions for the entire batch of data items in our task. We fur-
ther leverage the batch annotation model to propose a novel
batch active learning algorithm. We test the algorithm on
a real crowdsourcing platform and find that it outperforms
in-batch bias näıve algorithms.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; J.4 [Social
and Behavioral Sciences]: Psychology

Keywords
Crowdsourcing; active learning; annotation bias

1. INTRODUCTION
Online crowdsourcing platforms leverage Internet users

across the world to provide a scalable method for anno-
tating data sets for various machine learning tasks. There
are several systems providing online crowdsourcing services,
e.g. Amazon Mechanical Turk 1 and CrowdFlower 2. Al-

1https://www.mturk.com/
2http://www.crowdflower.com/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
WSDM’15, February 2–6, 2015, Shanghai, China.
ACM 978-1-4503-3317-7/15/02.
http://dx.doi.org/10.1145/2684822.2685301.

though far cheaper than employing and training expert an-
notators, crowdsourcing can still be expensive as building
high-performance classifiers often requires large sets of an-
notated data with multiple annotations for each data item.
To minimize these costs, we turn to active learning, a tech-
nique for selecting particular unlabeled data instances for
labeling to (hopefully) best improve classifier performance.
Unfortunately, traditional active learning methods assume
reliable annotators—this assumption is not feasible with
crowdsourcing. A number of studies [12, 24, 26, 29] have
discussed the topic of overcoming the annotation errors of
crowds on single data items in active learning.

In addition to each individual annotator’s annotation bias,
we find interference between data items simultaneously pre-
sented for annotation through crowdsourcing. There are
many situations in which batches of multiple data items are
judged by crowds at the same time. A typical example is
when evaluating results of a search engine given a certain
query, the retrieved web pages are judged by crowds (ei-
ther by explicit labeling or implicit click through rate) in
batches. Other examples include object recognition [22] and
clustering [8]. Batch active learning is particularly vulnera-
ble as multiple data items are submitted simultaneously for
annotation both to reduce annotation costs and to minimize
classifier retraining cycles.

Although the annotation bias of individual annotators on
single data items is well explored [15, 16, 28], there is little
published research on annotation bias introduced by present-
ing data items in batches to crowd annotators. Scholer et
al. [18] explored factors such as time intervals between two
judgments that may affect the quality of annotation in a
TREC data set, but without explicitly modeling the anno-
tation bias.

In this paper, we study in-batch annotation bias; that is,
the annotation interference between items in small sets of
data items. As a motivating example, consider Table 1 show-
ing annotation results from a crowdsourced task to identify
inappropriate comments on LinkedIn posts. Batch 1 (left
column) and Batch 2 (right column) capture two batches
submitted separately for crowd annotation as to which com-
ments are inappropriate. Both batches are sampled from
comments on the same post. The Label columns show the
crowdsourced annotation results. Although the final com-
ment in each batch is identical, they were annotated differ-
ently. In Batch 1, it is labeled as an acceptable comment,
probably because it is presented to the crowds along with all
the other comments containing URLs. However, in Batch 2,
it is labeled as inappropriate, perhaps as it is the only com-
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Table 1: Motivating example. The left column and the right column are two batches of data items sent to
crowdsourcing for annotation of inappropriate comments. All data items are from comments on the same
post. A “Yes” in the Label column indicates the comment is labeled as inappropriate by the crowds, while a
“No” means the comment is acceptable. The last comments of both batches are the same comment yet are
assigned different labels by the crowds. Annotations were generated by majority voting by annotators with
greater than 70 percent accuracy on co-mingled quiz batches.

Batch 1 Batch 2

Label Comment content Label Comment content
Yes www.youtube.com/watch?v=BKorP55Aqvg No Even after doing all this, sometimes it still doesn’t work I

might add. It is part of the job.
No something related: https://www.youtube.com/watch?v=

BKorP55Aqvg
No Chernobyl nuclear power plant was probably engineered

using “quality (sic !), speed and cost”...
No https://www.youtube.com/watch?v=BKorP55Aqvg Its

tough to be an engineer!
No I think a culture where folks can air grievances can be very

productive as long as they can be accumulated to identify
themes and trends. Otherwise, ... [Omitted]

Yes http://youtu.be/BKorP55Aqvg No Brian, my favorite saying as an engineer is: “I told you so
100 times.” You should put that at the top of your list :)

No Now from the perspective of the engineer: https://www.
youtube.com/watch?v=BKorP55Aqvg

Yes Now from the perspective of the engineer: https://www.
youtube.com/watch?v=BKorP55Aqvg

ment in this batch containing a URL. Although both batches
are given to the crowds with exactly the same instructions,
the crowds can still make incoherent judgments. We focus
on the case of small batch (e.g. size k ≤ 5), as annotators
are unlikely to see a large batch of data items at the same
time. We leave the case of larger batches to future study.

There are three major questions to address: Do annota-
tions of data items in the same batch interfere with each
other? If we find in-batch annotation bias, can we quantita-
tively measure the bias? Regarding the impact of in-batch
annotation bias, how can we design a batch active learning
algorithm that is still effective? We present the following
contributions exploring these questions:

1. Verifying and modeling in-batch annotation bias. We
conduct preliminary studies exploring the existence of
in-batch annotation bias. We then propose a factor
graph model to capture the annotating behaviors of
crowd annotators of data items in batches.

2. Proposing active learning algorithms with in-batch an-
notation bias. Based on the proposed annotating
model, we propose a novel batch active learning algo-
rithm, leveraging the in-batch annotation bias to help
improve the classifier performance, and prevent it from
being hurt by biased annotation.

3. Real-world experiments on a crowdsourcing platform.
We conduct experiments on an online crowdsourcing
platform to actively build a classifier for inappropriate
comments identification on LinkedIn data set.

The rest of this paper is organized as follows: Section 2
briefly introduces the background and the data set used, de-
fines the research problem, and presents preliminary exper-
iments on verifying in-batch annotation bias; Section 3 pro-
poses a factor graph based annotation model; Section 4 pro-
poses a novel batch active learning algorithm with in-batch
annotation bias; Section 5 shows the experimental results;
Section 6 introduces related work and Section 7 concludes.

2. PRELIMINARIES
In this section, we briefly introduce the problem space,

the data set used, and refine the particular active learning
problem we are trying to solve. We then refine our definition

of“in-batch annotation bias”referring to the interference be-
tween annotations of different data items presented together
to the annotators. From this foundation we present a series
of studies to verify the existence of in-batch annotation bias,
and how the data items in a batch may interfere with the
annotation of each other.

2.1 Background and Data Set
LinkedIn is the world’s largest professional network service

operator, with more than 300 million members in over 200
countries and territories 3. LinkedIn allows users to com-
ment on posts published by both companies and LinkedIn
influencers 4. Unfortunately, a certain portion of the com-
ments might be spams, offensive, or otherwise inappropriate
to display. To maintain a high-quality member experience,
it is critical to identify and prevent these comments from
being displayed.

We employ a supervised classifier (e.g. logistic regression)
trained offline, which requires a sufficiently large set of anno-
tated data. In order to collect training data, we use Crowd-
Flower for data annotation. Annotators are provided an
annotation codebook with definitions of inappropriate com-
ments, as well as several examples of both inappropriate and
acceptable comments. In this task, we define inappropriate
comments as promotional, profane, blatant soliciting, ran-
dom greeting comments, as well as comments with only web
links and contact information. Comments on the same post
are grouped together and divided into batches, where each
batch consists of up to five comments. All comments in a
batch are displayed simultaneously to the annotators.

We sample a data set of 431,525 comments on 89,355 posts
of companies and influencers in LinkedIn. 128,587 of them
are comments on “company updates”, 48,207 of them are on
“influencer updates” and 254,731 are on “influencer articles”.
In order to track the performance of crowd annotators, we
construct a ground truth data set with 2,835 comments. The
ground truth data set is annotated by 9 trained LinkedIn
employees (experts) using the same codebook and interface
as used for the crowdsourcing experiments. Each comment is
classified as either inappropriate or acceptable. The average
Cohen’s kappa for all annotator pairs is 0.7881.

3http://press.linkedin.com/about
4LinkedIn influencers are a selected set of industry and
thought leaders.
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2.2 Batch Active Learning
Active learning algorithms iteratively choose unlabeled

data items for labeling by an external oracle (e.g. expert
human annotators) and then fold the new labeled data back
into the training data set. A model is retrained on the up-
dated training set. When more than one data item is chosen
in an iteration it is called batch active learning. More pre-
cisely, suppose the unlabeled data set is U , labeled set is
L, and the labels of L are in yL. A typical active learning
algorithm chooses a subset A ⊂ U with a given size k and
obtains their labels yA from an oracle. The selected data
is then moved from U and added to L with their labels yA
concatenated to yL.

Existing active learning algorithms often assume the an-
notation provided by the oracle is reliable. However, this
assumption is rarely true, especially when crowds are em-
ployed as the oracle. Let A be some subset of data items and
y′A (different from yA, which is the ground truth labeling)
is their annotations drawn from some round of crowdsourc-
ing. Then, treating crowdsourcing as a random process, we
regard y′A as a random variable described by distribution
q(y′A|A). In this light, our objective is now to design an ac-
tive learning algorithm which leverages q(y′A|A) while choos-
ing unlabeled data items in each iteration. More formally,

Problem 1. Batch active learning from biased
crowds. Let L be a data set with known labels yL, and
U be an unlabeled data set where each item i in L and U
is described by feature vector Xi. For a set of data A con-
sisting of k items, a crowd provides a (biased) annotation
drawn from distribution q(y′|A). The objective is to choose
the best subset A∗ ⊂ U satisfying |A| = k, so that after
adding A and the annotation given by the biased oracle y′A
into L and yL, the performance of classifier trained on the
new labeled data is optimized.

Before we develop the active learning algorithm, we need
to first understand the crowds’ annotation behavior, and
model their annotating distribution q(y′|A).

2.3 In-Batch Annotation Bias
Annotation bias has been observed in multiple fields, in-

cluding machine translation [4], image labeling [27], and in-
formation retrieval [18]. Most studies focus on annotation
bias on a single data item, resulted from variance across
annotators. This bias can often be corrected either by col-
lecting data from multiple annotators or carefully choosing
annotators.

However, due to limits of time and cost, or the nature of
data, data items are also often organized into small batches,
and presented to the annotators at the same time. This
particular way of presenting data items can introduce addi-
tional annotation bias, which cannot be fixed using multiple
annotators. Suppose the batch is represented by a set of
data items b = {bi}. If the annotation from the crowd an-
notators on a certain data item bi in the batch, represented
by y′i, follows a different distribution from the annotation on
the same data item but displayed alone, or from the distri-
bution when it is assembled with different other data items
in batch b′, then there is a certain kind of annotation bias
introduced by the way we display data items. For exam-
ple, in our inappropriate comment identification task, if an
acceptable comment is presented along with a whole batch

of inappropriate comments, it might be more likely to be
mistakenly chosen as inappropriate; it could also be more
likely to be correctly labeled, if other comments in the same
batch happened to provide some examples as reminders of
some subtle rules of inappropriate comments (e.g. the com-
ment containing URL in Table 1). In contrast, if a comment
is presented alone, annotators are more likely to make rela-
tively independent judgments, but also lose the possibility to
be implicitly taught by other comments in the same batch.
We refer to this potential annotation bias as “in-batch an-
notation bias”.

Verifying in-batch annotation bias. Based on the
ground truth data for inappropriate comment identification
task, we conduct experiments verifying different factors that
may result in in-batch annotation bias.

We first study how the batch size can affect annotating
behavior of crowds. Each time we take a comment as a data
item of interest, then sample uniformly at random from the
other comments of the same post, to construct two batches
of data items, with sizes k1 < tk and k2 ≥ tk respectively,
where tk is the batch size threshold which defines the treat-
ment. The comment in the batch of size k1 is untreated,
and is put into the control group, while the comment in the
batch of size k2 is treated, and is placed into the test group.

Another factor to be explored is the number of positives
(i.e. inappropriate comments in our settings) in the batch.
We take the same data item of interest as above then ran-
domly sample π1 < tπ and π2 ≥ tπ items from all the inap-
propriate comments in the same post, joined with k−π1−1
and k − π2 − 1 acceptable comments, also randomly sam-
pled from the same post to form two batches in the control
and test group respectively. Here k is fixed to be five, and
0 ≤ tπ ≤ k − 1 is a given threshold.

We mix batches in both groups together and collect their
annotations from CrowdFlower with the tasks structured to
prevent the same annotators from labeling a particular data
item multiple times. We compare the probability of each
data item of interest being annotated as inappropriate in
both the control and test groups. As we already know the
ground truth of each comment, we separately study data
items with different ground truth labels. Specifically, for a
positive data item of interest, we compare its true positive
rate in the control group TPR1 and in the test group TPR2

by calculating the ratio TPR2/TPR1; for a negative data
item of interests we compare its false positive rate in control
and test groups by FPR2/FPR1.

Observation results. In Figure 1 and 2 we plot the
ratios of true positive and false positive rates TPR2/TPR1

and FPR2/FPR1 for each treatment with thresholds tk and
tπ respectively. In Figure 1(a), we do not observe signifi-
cant 5 bias under treatments of different batch size thresh-
olds, which means the true positive rate is not likely to be
influenced by the batch size. On the other hand, in Fig-
ure 1(b), we see that presenting data items with other data
items can reduce the false positive rate as compared to pre-
senting only a single data item. This indicates that annota-
tion bias exists when data items are organized into batches.

Moreover, Figure 2(a) shows TPR2/TPR1 is significantly
less than one, when the treatment is set to “having one or
more other positive data items in the same batch”, which

5By “significant”, we mean the ratio 1.0 is not within the
95% confidence interval for the observed results.
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Figure 1: Comparing ratios of true positive rates
(TPR) and false positive rates (FPR) when annotat-
ing with different thresholds tk on the batch sizes.
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Figure 2: Comparing ratios of true positive rates
(TPR) and false positive rates (FPR) when anno-
tating with different thresholds tπ on the number of
positives.

means that positive data items are less likely to be identified
correctly when there are other positive data items in the
same batch. This conclusion is still significant when tπ is
increased to two; however there is not sufficient evidence
to support this when tπ is greater than two. On the other
hand, Figure 2(b) shows that FPR2/FPR1 is significantly
larger than one, when tπ is set to either two or three. This
suggests that negative data items appearing along with a
number of other positive data items can also influence crowd
annotation. The observational results verify that annotation
towards data items in the same batch can influence each
other. In certain scenarios, the in-batch annotation bias can
adversely impact annotation quality.

3. A FACTOR GRAPH MODEL FOR
BATCH ANNOTATION

An intuitive explanation to the phenomenon illustrated
in Figure 2 is that when an annotator works on a batch of
data items, she may have a prior distribution of counts of
different labels in a batch. That is, for a batch of comments,
an annotator may be reluctant to mark many comments as
inappropriate due to a prior belief that inappropriate com-
ments are rare. Although the prior could be overcome when
the labels are certain, this “inertial thinking” can overwhelm
the annotation of difficult or uncertain data items. Based
on this intuition, we introduce a factor graph model to de-
scribe the annotating distribution with in-batch annotation
bias. We then use the model to characterize the bias in
actual crowd-annotated data.

Model description. We represent a set of data items by
d-dimensional feature vectors X = {xi}, where xi ∈ Rd.
The data items are organized into batches B = {bj} of

size k, where each batch is a list of data items bj =

[b
(1)
j , · · · , b(k)

j ] with size k. Without loss of generality, we
suppose each batch bj receives one annotation represented

by y′j = [y
′(1)
j , · · · , y′(k)

j ], where y
′(i)
j ∈ Y, and Y is the set of

possible labels. If each batch can receive multiple annota-
tions, we can produce multiple batch-annotation pairs with
the same batch data associated with different annotations.
The set of annotations is denoted as Y ′ = {y′j}. Notice that

we are modeling the annotation y
′(i)
j of data item b

(i)
j , which

is different from the ground truth label y
b
(i)
j

.

In the graphical representation of the proposed batch an-
notation model shown in Figure 3, each annotation of a sin-

gle data item y
′(i)
j is represented by a random variable (clear

circles), and the feature vector x
b
(i)
j

is represented by k ob-

served variables (shaded circles). For simplicity, we only
draw the model for a single batch bj with a fixed size k, and
assuming bj = [1, 2, · · · , k].

In addition, there are k factor functions φ
(
xi, y

′(i)
j

)
, mod-

eling the correlation between human annotation and data
item features:

φ(xi, y
′(i)
j ) = exp

[
α>f(xi, y

′(i)
j )

]
(1)

where α is a vector of weighting parameters; f(xi, y
′(i)
j ) maps

the feature vector according to y
′(i)
j , which in the binary

classification case can simply be f(xi, y
′(i)
j ) = y

′(i)
j xi.

To further consider the in-batch annotation bias, an ad-
ditional factor function γ

(
y′j
)
, defined as:

γ
(
y′j
)

= exp
[
β>g(y′j)

]
(2)

where in this model, we simply consider the count of dif-
ferent labels appearing in this annotation. Thus g(y′j) can
be an indicator function, where each element corresponds to
a possible distribution over counts of different labels within
a size-k batch. For example, in a binary classification task,
g(y′j) can be a (k+1)-dimensional vector, where the (k1+1)-
th element is 1 when |y′j | = k1, leaving all the other elements
as 0. β is a vector of weighting parameters.

The likelihood function can be written as:

L =
∏
j

1

Zj

k∏
i=1

φ(x
b
(i)
j

, y
′(i)
j ) · γ

(
y′j
)

=
∏
j

1

Zj
exp

[
k∑
i=1

α>f(x
b
(i)
j

, y
′(i)
j ) + β>g(y′j)

]
(3)

where Zj =
∑
y′ exp

[∑k
i=1 α

>f(x
b
(i)
j

, y′(i)) + β>g(y′)

]
is

the normalizing factor for each annotation of a batch.

Model learning. We learn the model through gradi-

ent descent. By defining θ =
[
α> β>

]>
and h(bj , y

′
j) =[∑k

i=1 f(x
b
(i)
j

, y
′(i)
j )> g(y′j)

>
]>

, our learning objective is to

find the best θ∗ to optimize the log-likelihood.
The simplified expression of log-likelihood is:

logL =
∑
j

[
θ>h(bj , y

′
j)− logZj

]

246



x1

y1 '

x2

y2 '

x3

y3 '

x4

y4 '

x5

y5 '

φ xi , yi '( )

γ y '( )k = 5

Figure 3: A graphical representation of the batch
annotation model (k = 5).

And the gradient can be calculated by

∂ logL
∂θ(m)

=
∑
j

h(m)(bj , y
′
j)−

∑
y′

exp
(
θ>h(bj , y

′)
)

Zj
h(m)(bj , y

′)


=
∑
j

[
h(m)(bj , y

′
j)− Ey′

[
h(m)(bj , y

′)
]]

Calculation of the gradient is exponential to the batch size
k. This isn’t problematic, however, as at least for our tasks,
k is small—typically k ≤ 5. Thus, the computational cost is
acceptable.

Parameter analysis. We learn the model based on anno-
tations from crowds on the task of inappropriate comment
identification. There are 6,121 annotations on 1,000 batches
of size k = 5. Each batch of comments was constructed
randomly without replacement. We encode the annotation
by the label set Y = {0, 1}, where 1 (positive) represents
“inappropriate comment”, and 0 (negative) represents “ac-
ceptable comments”. Figure 4(b) presents the log-likelihood
curve during the training process, which clearly shows that
the model converges within 200 iterations.

Figure 4(a) shows the parameter β of the learned model,
where β(k1) is the weight for annotation y′ satisfying
||y′||1 = k1 (i.e. the (k1 + 1)-th element of vector β). The
greater β(k1) is, the more likely annotators are to produce
an annotation with k1 positive labels among all the k data
items. This suggests that annotators for this task tend to
make polarized annotations, namely either none or all of the
data items are positive. A possible reason is when an anno-
tator already sees four of the data items in a batch are pos-
itive (negative), she may unjustly annotate the other data
items also as positive (negative) without carefully checking
the item itself.

Time complexity analysis. We provide a time complex-
ity analysis of training the batch annotation model. Suppose
the size of training data set is n. The dimension of parame-
ter α is d× (|Y| − 1), while the dimension of parameter β is(
k+1
|Y|−1

)
. For each batch-annotation pair, calculating the gra-

dient requires O(|Y|k) steps. Thus the time complexity for
an iteration of model training is O(n|Y|k + d|Y|+

(
k+1
|Y|−1

)
).

As both k and |Y| are small (effectively constant), the model
training is computable, and will only increase linearly with
regard to the feature number d.
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Figure 4: Factor graph model parameter and conver-
gence results when trained to characterize in-batch
bias in crowdsourced annotation.

4. ACTIVE LEARNING WITH IN-BATCH
ANNOTATION BIAS

In this section, we propose an active learning algorithm
taking advantage of in-batch annotation bias. For all the
possible annotations on a subset of data items, we calculate
the utility of each annotation weighted by its probability,
where the utility is measured by the training likelihood on
labeled data and the entropy of the unlabeled data based on
the classifier updated by the subset. Then we optimistically
choose the largest weighted utility as the quality function
for this subset of data items. The active learning algorithm
presented below is summarized in Algorithm 1.

Suppose the predictive probability of data item i is rep-
resented by p(y|xi;wL), where wL is the parameter for a
classifier trained on data set L with labels yL. Denote the
annotating probability of a batch of data items as q(y′A|x),
where y′A contains the annotation of all the data items in A.
An intuitive objective is to find a subset A ⊂ U satisfying
|A| = k, to optimize the expected utility of the classifier over
the annotation distribution:

A∗ = arg max
A

∑
y′
A
∈Yk

q(y′A|xA)F (L ∪A, yL ∪ y′A, U \A)

where F (L∪A, yL∪y′A, U \A) measures both the likelihood
of labeled data and the uncertainty of all the unlabeled data
based on the classifier trained on the labeled set extended
by A and its annotation y′A:

F (L ∪A, yL ∪ y′A, U \A) =

[
(1− λ)

∑
l∈L∪A

log p(yl|xl;w′)

+λ
∑

u∈U\A

∑
yu∈Y

p(yu|xu;w′) log p(yu|xu;w′)

]
where λ is a given constant between 0 and 1, and w′ is the
classifier parameters trained on L∪A, where A is annotated
by y′A.

By employing the factor graph model to estimate the an-
notating probability q, we have:

q(y′A|xA) =
1

ZA
exp

[∑
a∈A

α>f(xa, y
′
a) + β>g(y′A)

]
where ZA is the normalizing factor.

However, directly optimizing this objective function is
computationally difficult. Instead, we optimize the following
objective:

max
A,y′∈Yk

q(y′|xA)
[
F (L ∪A, yL ∪ y′, U \A)− F (L, yL, U)

]
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which optimistically evaluates a subset A by the maximum
product of the possible gain given a certain annotation y′,
and the probability that this annotation happens. A simi-
lar strategy is employed in [9]. Note that we are taking the
increment of the F function by adding A instead of directly
taking its value. Because given a subset A, if there exists
an annotation y′ that causes a drop of F function, then it
should be penalized more as the probability of this annota-
tion increases. In contrast, if annotating A with y′ increases
the F function, we favor y′ as its probability increases.

Optimizing this objective function is still NP-hard as one
has to enumerate all the possible subsets of U . Instead, we
represent the chosen set A and their labels y′A by a con-
tinuous matrix S ∈ R|U|×|Y| where each row corresponds
to an unlabeled data item in U , and a |Y|-dimensional vec-
tor ν, where each element νy indicates the count of chosen
data items that are annotated with label y. Without loss
of generality, we assume all the unlabeled data items in U
are indexed by 1, . . . , |U |. The following constraints must be
satisfied for S and ν to be valid:

1. 0 ≤ S ≤ 1;

2. ∀y ∈ Y,
∑
i Si,y = 1;

3.
∑
y νy = k, so that the total size of chosen set is k;

4. ∀i,
∑
y νySi,y ≤ 1, to make sure each data item can

only be chosen once.

Thereby the y-th column of S is a vector indicating which
data item will be chosen and annotated as y, and

∑
y νySi,y

for each i represents how likely i will be chosen in A. We
denote the set of all the S that satisfying all the above con-
straints with regard to a given ν as Φν .

By representing A and y′A by S and ν, we further relax
the q function with regard to S and ν by:

q̂(S, ν|X) =
1

ZS,ν
exp

[∑
i,y

Si,yνyα
>f(xi, y) + β>ĝ(ν)

]
(4)

where the output of ĝ(ν) is equal to g(y′) for any y′ with
exactly the same count of different labels as ν indicates. And
the normalizing factor can be estimated by:

ZS,ν =
∑
µ

exp

[∑
i

∑
y,ỹ

Si,yµỹ,yα
>f(xi, ỹ) + β>ĝ(µ>1)

]
(5)

where 1 is an all-1 vector with |Y| dimensions, and µ is
a |Y|-by-|Y| matrix, with each element as a non-negative
integer, satisfying µ1 = ν. Although calculating the nor-
malizing factor needs to enumerate all the possible µ, it is
still computationally feasible as both the label space size |Y|
and batch size k are usually small.

Similarly, we can relax the F function with regard to L
and U . For simplicity, we omit the variable L, yL, U as they
do not change during our optimization:

F̂ (S, ν) =
[
(1− λ)

∑
l∈L

log p(yl|xl;w′)

+ (1− λ)
∑
i,y

Si,yνy log p(y|xi;w′)

+ λ
∑
i,y

Si,y(1− ν>1)p(y|xi;w′) log p(y|xi;w′)
]
(6)

Input: Initial labeled set L, unlabeled set U , batch size
k, iteration number N , step length η, λ, Trained
annotation model θ

for n← 1, . . . , N do1

Train classifier based on L;2

O∗ ← −∞;3

// Enumerate ν
forall ν do4

Initialize S;5

// Optimize by S
repeat6

Calculate ∇SO according to Eq. (8);7

Z ← S + η∇SO;8

S ← arg minS′∈Φν
1
2
||S′ − Z||2F ;9

Update classifier w′ w.r.t. S, ν;10

until converged ;11

if O(S, ν) > O∗ then12

O∗ ← O(S, ν);13

S∗ ← S;14

Extract A from S∗;15

Acquire labels of A from crowds;16

Add A and their labels into L and remove A from U ;17

Algorithm 1: Active learning with in-batch anno-
tation bias.

Now we can optimize

O(S, ν) = q̂(S, ν|X)
[
F̂ (S, ν)− F (L, yL, U)

]
(7)

where w′ is the classifier parameter trained on the union of
L and a weighted data set which assumes the unlabeled data
are labeled as indicated by S and weighted by corresponding
νySi,y.

The proposed objective function can be optimized by enu-
merating all the possible ν, and optimizing S given ν, as
both the batch size k and label space size |Y| is not large.
Fixing ν, the optimization problem may be solved by gra-
dient descent. It can still be challenging to calculate the
gradient, as w′ is a function of S. However, as our adjust-
ment of S is subtle, we can assume w′ to be fixed for the
gradient, but update w′ by retraining the model after S is
adjusted. The gradient can be calculated as:

∂O(S, ν)

∂Si,y
=
∂q̂(S, ν|X)

∂Si,y

[
F̂ (S, ν)− F (L,U)

]
+ q̂(S, ν|X)

∂F̂ (S, ν)

∂Si,y
(8)

where ∂q̂/∂Si,y and ∂F̂ /∂Si,y can be obtained from Equa-
tion (4), (5) and (6). In order to take care of all the con-
straints of S, since the feasible set is the intersection of multi-
ple linear inequalities, we can project the updated (possibly
not feasible) Z into the feasible set after each update, by
finding the closest point S in the feasible set Φν , which is
a quadratic optimization problem minimizing the Frobenius
norm ||S − Z||F with constraints.

Once the solution S∗ and ν∗ that optimize the objective
function above is obtained, we can choose set A accordingly.
One way is to calculate the vector σ = S∗ν∗ and take the
top-k data items i with the top σi values in σ vector, as sub-
set A. Another way is, for each y ∈ Y, take the top-ν∗y data
items i with maximal Si,y values. We selected the second
method as we find it more comfortable with our intuitions
regarding the underlying processes.
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Time complexity analysis. To be general, we assume
the training complexity of the classifier is O(τ(|L|)). At
each iteration, we need to enumerate all the possibie ν,
which is

(
k+1
|Y|2−1

)
. Optimizing S needs to calculate ∇SO,

which takes O(|U ||Y| + |Y|k). Updating the classifier with
regard to S takes O(τ(|L| + |Y||U |)). Assuming the to-
tal iterations to run before S converge is T . Extracting
A from S∗ is O(|U |). Thus, at each iteration, the time
complexity of selecting a batch of data items with size k,

is O
(
τ(|L|) +

(
k+1
|Y|2−1

)
T
(
|U ||Y|+ |Y|k + τ(|L|+ |Y||U |)

))
.

Notice that k and |Y| are very small in most cases. For
example, in our inappropriate comment identification task,
|Y| = 2 and k = 5, both k|Y| and |Y|k is less than 102.

5. EXPERIMENTAL RESULTS
We test the effectiveness of our proposed active learning

algorithm by conducting real experiments with a crowd-
sourcing service platform, on live LinkedIn data.

Data set. We sample a subset of 7,012 comments from a
collection of posts with more than 5 comments, as the pool of
data items for active learning. Among which, 30 comments
are labeled by LinkedIn employees, serving as the initial la-
beled data set L for active learning, while the others (U) are
left unlabeled. An additional subset of 1,715 comments are
sampled from the ground truth data set labeled by LinkedIn
employees (Cf. Section 2), where 1,372 of them become the
test data set for evaluating the classifier performance and
the other 343 comments form a validation data set.

Comparing method. We compare the performance of
our proposed method with random selection and two of the
existing algorithms:

• Random (RND) Baseline. Data items are picked at
random. In particular, posts are selected uniformly
at random without replacement. For each selected
post, comments are again selected uniformly at ran-
dom without replacement.

• Maximum Uncertainty (MU). Selects those data items
for which the current classifier is most uncertain where
uncertainty is measured by entropy and calculated as
follows:

A∗ = arg max
A∈U

∑
a∈A

∑
y∈Y

−p(y|xa, wL) log p(y|xa, wL)

where |A| is our batch size k.

• Discriminative Active Learning (DA). This method
uses a similar objective function as the proposed
method (WDA) but without weighting F with anno-
tating probability q. It is equivalent to the discrimina-
tive active learning algorithm proposed in [9].

* Weighted Discriminative Active Learning (WDA).
This is our proposed method discussed in Section 4.

Experimental setup. For each of the above algorithms,
we run for 20 iterations, starting from the same initial train-
ing set L consisting of 30 annotated data items drawn from
the expert labeled ground truth. The base classifier used
is logistic regression with L2 regularization as implemented
in Weka 6. In our task we only display comments (data
6http://www.cs.waikato.ac.nz/~ml/weka/

items) on a common post in a particular batch. This is
implemented for the above algorithms as follows: at each
iteration for each algorithm we restrict the chosen set Ap to
be a subset of comments on some post p. This is repeated for
every post with more than k (set to 5 for all experiments)
comments left in the unlabeled data set U . After all the
batches (Ap) are generated, they are ranked by the active
learning objective function and the top 50 batches are sent to
the crowdsourcing platform for annotation. After the data
items are annotated, they are added into the training data
set and removed from the unlabeled data set. The classifier
is then retrained on the new training data set.

We utilize CrowdFlower as our crowdsourcing platform.
As discussed in Section 2, the codebook definitions for inap-
propriate comments and examples of both inappropriate and
acceptable comments is presented to the annotators at each
iteration. Each annotator is first evaluated with ten “test
questions”, i.e. batches of data items with known annotation,
for the crowdsourcing system to assess their “trust”. Only
annotators who can correctly answer at least 70% of the test
questions can proceed to the actual annotation task. Each
batch of data items must be labeled by at least five annota-
tors before it is returned from CrowdFlower. We determine
the final label for each data item with majority voting of the
returned annotations.

Evaluation. We evaluate the performance of each clas-
sifier at each iteration with the following metrics calculated
against the test set:

• Area under ROC (AUC).

• F0.5-score (F0.5). Calculated with F0.5 =
(1+0.52)×precision×recall

0.52×precision+recall
as we value precision more

than recall.

• Optimized F1-score (F ∗1 ). As the data distribution can
be extremely imbalanced in our task, we optimize each
classifier’s threshold in terms of F1-score with the vali-
dation set, instead of using the default of 0.5. We then
test the classifier’s F1 performance with that thresh-
old.

• Optimized F0.5-score (F
∗
0.5). Similarly, we can optimize

the F0.5-score based on the validation set and evaluate
on the test data set.

• Recall @ Precision (R@P ). We find the recall at a
minimum precision by adjusting the classifier threshold
and reporting the highest recall with precision greater
than a certain value. In these experiments, we use
Recall@0.95 and Recall@0.90.

We also evaluate each algorithm by its average classifier
performance across all iterations. For optimized F -score,
the classifier threshold is recalculated at each iteration.

Performance comparison. Table 2 shows the aver-
age classifier performance for each of our evaluated algo-
rithms. All of the active learning algorithms outperform
the random baseline. Among all the active learning algo-
rithms, WDA outperforms the other baseline methods for
both optimized F -measures as well as recall at a fixed pre-
cision. It also achieves a performance close to maximum
uncertainty in terms of F0.5-score, without optimizing the
threshold. Especially in terms of R@.95, WDA achieves an
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Figure 5: Comparing learning curves of different ac-
tive learning algorithms.

Table 2: Performance of active learning algorithms.
All results are shown as percents.
Method AUC F0.5 F ∗1 F ∗0.5 R@.95 R@.90

RND 97.73 57.74 70.75 69.95 11.45 43.49
MU 97.86 68.58 75.40 69.83 29.74 48.16
DA 97.82 60.84 74.80 73.98 37.50 52.17

WDA 98.17 68.39 76.45 78.69 51.97 56.05

average performance of 51.97%, while maximum uncertainty
does not reach 30%. Most interestingly, it outperforms DA
on all measures giving further evidence that our factor graph
model is indeed learning and leveraging the in-batch anno-
tation bias. Learning curves of different measures are also
shown in Figure 5. After iteration seven, RND’s perfor-
mance on F1 and R@.95 plummets. We suspect this is due
to noisy annotation. Simultaneously, the recall for WDA at
95% precision converges to a stable value much higher than
the other methods.

Case study. To better understand what is happening
with the annotations, we performed a case study comparing
the WDA and non-WDA annotations. We compare sev-
eral pairs of batches constructed by WDA and other base-
lines having at least one comment in common but anno-
tated differently. Some examples are shown in Table 3. In
the first pair, WDA selected five comments predicted to be
identically annotated as inappropriate while RND, picking
at random, chose a mix with three actually inappropriate
comments (the last three). The comment in common is cor-
rectly annotated as inappropriate in the WDA constructed

batch but not in the randomly constructed batch. The third
comment in the random batch is actually also inappropriate
according to our codebook yet was mislabeled by a majority
of the crowd annotators. WDA tends to construct batches
where the biased annotation probability and the classifier
predicted probability are relatively coherent, which in turn
helps crowds perform more correct annotation.

The second example compares WDA to DA. The fifth
comment in the WDA constructed batch is actually a blatant
solicitation. It starts with “I am Madame Clarisse...” but
ends with advertising loan services. For DA, on the other
hand, this same comment is not identified as inappropriate.
We notice that there is another inappropriate comments in
the same batch, which is correctly identified. As we observed
in Figure 4(a), annotators are more reluctant to label two
inappropriate comments than only one in a batch.

6. RELATED WORK
Annotation bias. A number of studies have been con-
ducted on evaluating data quality collected from crowds, and
modeling annotator behaviors to optimize the data quality.
Snow et al. [21] explored the performance with non-expert
annotators in several NLP tasks. Raykar et al. [14, 15, 16]
studied how to learn a model with noisy labeling. Specifi-
cally, they employ a logistic regression classifier, and insert
hidden variables indicating whether an annotator tells the
truth. Whitehill et al. [28] modeled the annotator ability,
data item difficulty, and inferred the true label from the
crowds in a unified model. Venanzi et al. [23] proposed a
community-based label aggregation model to identify differ-
ent types of workers, and correct their labels correspond-
ingly. However, they do not study the case when data items
are grouped into batches. Das et al. [5] addressed the inter-
actions of opinions between people connected by networks.
Demeester et al. [6] discussed the disagreement between dif-
ferent users on assessment of web search results. Their stud-
ies also focus on understanding annotator behavior, but none
of them consider the case when multiple data items are or-
ganized into a batch.

Scholer et al. [17, 18] studied the annotation disagree-
ments in a relevance assessment data set. They discovered
the correlation between annotations of similar data items.
They also explored“threshold priming” in annotation, where
the annotators tend to make similar judgments or apply sim-
ilar standard on consecutive data items they review. How-
ever, their studies focus more on qualitative conclusions,
without a quantitative model to characterize and measure
the discovered factors. Carterette et al. [2] provided several
assessor models for the TREC data set. Mozer et al. [13]
studied the similar “relativity of judgments” phenomenon on
sequential tasks instead of small batches. Also, they focused
more on debiasing not active learning.

Batch active learning. Active learning has been ex-
tensively studied. Settles et al. [19] summarized a number
of active learning strategies. Batch active learning, in con-
trast to traditional active learning settings, aims to choose
a set of data items to query, which proposes some unique
challenges. Some strategies focus on optimizing the help-
fulness of a data batch. Hoi et al. [11, 10] utilized Fisher
information matrix to choose the data items that are likely
to change the classifier parameters most. Brinker et al. [1]
studied batch active learning for SVM and aimed to max-
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Table 3: Case study results. The left column shows the batches constructed by WDA method, while the
right column shows the batches constructed by different baselines. y′i gives the crowdsourced annotation with
“Yes” marking inappropriate comments and “No” for acceptable comments. Comments whose label is bolded
are common to both batches.

WDA RND

y′i Comment content y′i Comment content
Yes please check my profile. harvindersinghlon-

gowal@yahoo.com
No when fresher will get experience until they don’t give op-

portunity.
Yes Dear sir, I am interested, please check up my profile No only experience no fresher ................ very bad-

dddddddddddddd
Yes Dear sir I interest your job. please check my details. No review my stats and kindly notify for further proceedings
Yes Interested. Please see my profile. Yes please check my profile, mobile number is. 09559186335
Yes Hello Sir, Please check my profile. I am ready to work in

any part of world. Thank you,
No Hello Sir, Please check my profile. I am ready to work in

any part of world. Thank you,

WDA DA

y′i Comment content y′i Comment content
No What we need* No Exactly, what I needed to read today. It really is almost

like scary when you get a gift like this read. ... [Omitted]
No Thank You... sounds familiar...Seen 3 recession...been last

person in company (28 years old) before company ban-
crupty, giving 260 people notice before that, part of the
job was to sold the assets, basically buried the company...
Never get fired after that...:-) But i can relax now only
in different atmosphere...vacation..summer house without
phone...:-)

Yes Good day, My Name is Peter Williams, am a supplier We
suppliers all kind of metals and plastic and scrap, If you
are interested in any product kindly send me email and
the materials you want so i could send you our quotation
okay.
If you are interested in any of materials, Kindly revert
back to me via “infocuixin.sl@gmail.com”
Thanks

No That was the message I needed. I will not dwell...I love
my job!

No Thanks for the article, Sallie. I like your secret #3 above-
responsibility to those who have helped you before. ...
[Omitted]

No I don’t relax well either, why do that when I could go for
a walk?

No Yes, we do!! Please tell her to check us out at EllevateNet-
work.com

Yes I am Madame Clarisse Sweet, ... [Omitted] I’d like to
know if you have found an investor to assist you in realizing
your projects otherwise the jeans Jeanne couple can help
you if this is the couple who helped me find my loan of
75,000 e It I can help you as you who is in need he can be
reached at the following email: naillejvalane@gmail.com

No I am Madame Clarisse Sweet, ... [Omitted] I’d like to
know if you have found an investor to assist you in realizing
your projects otherwise the jeans Jeanne couple can help
you if this is the couple who helped me find my loan of
75,000 e It I can help you as you who is in need he can be
reached at the following email: naillejvalane@gmail.com

imize the diversity within the selected set of data samples.
Guo et al. [9] proposed discriminative active learning strat-
egy by formulating the problem as an optimization problem.
A number of strategies also aim at choosing the most repre-
sentative data batch with regard to the unlabeled data set.
Yu et al. [30] proposed a transductive experimental design,
which prioritizes the data samples that represent the hard-
to-predict data. Chattopadhyay et al. [3] tried to choose
the data batch to minimize Maximum Mean Discrepancy
(MMD) to measure the difference in distribution between
the labeled and unlabeled data. There are studies address-
ing both intuitions. Wang et al. [25] designed a framework
to minimize the upper bound of empirical risk, which aims
to find a batch of data items that are both discriminative
and representative. However, all of the above studies assume
reliable oracles—which never are in multiple-annotator sce-
narios such as crowdsourcing.

Active learning with crowds. Crowdsourcing serves as
a potentially ideal oracle for active learning. Two perspec-
tives have been explored; first is how to select data items
to query when the oracles are noisy. Sheng et al. [20] pro-
vided an empirical study on the performance of repeated
labeling and developed an active learning strategy address-
ing both the “label uncertainty” and “model uncertainty”.
Second is how to select annotators for crowdsourcing. Don-
mez et al. [7] studied this problem, by modeling the querying
problem as a multi-armed bandit problem. Each annotator
is regarded as as a bandit, and a binary reward function is

defined based on whether the oracle provides a correct la-
bel. Yan et al. [29] explore both the problem of selecting
query samples and selecting oracles, in context of a logistic
regression classifier. Kajino et al. [12] proposed a convex op-
timization function for active learning in crowds. However,
none of them leverages in-batch bias for active learning.

7. CONCLUSION
In this paper, we study the in-batch data annotation bias

from crowds, which occurs when data items are organized
into small batches. Our experimental results on a crowd-
sourcing platform suggest that the annotation of data items
is impacted by other data items presented in the same batch.
We propose a factor graph based batch annotation model,
to capture the in-batch annotation bias of crowds. Based
on the annotation model, we propose a novel active learning
algorithm, which takes advantage of our batch annotation
model to construct batches of unlabeled data items that re-
duce annotation error and improve classifier performance.

It may not be the case that the particular bias we found
in our task generalizes to other tasks—this requires more
experimentation. Regardless, it is reasonable to expect some
form of in-batch bias. Our factor graph model can be trained
on a preliminary annotation to detect whatever in-batch bias
is present and then our proposed active learning algorithm
can leverage that model to improve performance.

The proposed annotation model has broad application as
strict independence between annotations of different data
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items can not be achieved in many annotation tasks. With-
out much training, crowd annotators are more likely to be
steered by in-batch bias into making unnecessary mistakes.
Although the batch annotation model is learned from the
annotations of inappropriate comments in online social net-
works, we argue that the conclusion drawn from the model
is not task-specific and should be applicable to most crowd-
sourcing labeling tasks. For example, it would be interesting
to use the model to explore in-batch bias in conference pa-
per reviewing. This paper has focused on one annotation
task. A next step is to evaluate the proposed algorithms on
other tasks. It is also interesting to evaluate if the model pa-
rameters can be directly transferred between tasks without
retraining.
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