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ABSTRACT
Early identification of patients at risk for postoperative complica-
tions can facilitate timely workups and treatments and improve
health outcomes. Currently, a widely-used surgical risk calculator
online web system developed by the American College of Surgeons
(ACS) uses patients’ static features, e.g. gender, age, to assess the risk
of postoperative complications. However, the most crucial signals
that reflect the actual postoperative physical conditions of patients
are usually real-time dynamic signals, including the vital signs of
patients (e.g., heart rate, blood pressure) collected from postopera-
tive monitoring. In this paper, we develop a dynamic postoperative
complication risk scoring framework (DyCRS) to detect the “at-risk”
patients in a real-time way based on postoperative sequential vital
signs and static features. DyCRS is based on adaptations of the
Hidden Markov Model (HMM) that captures hidden states as well
as observable states to generate a real-time, probabilistic, complica-
tion risk score. Evaluating our model using electronic health record
(EHR) on elective Colectomy surgery from a major health system,
we show that DyCRS significantly outperforms the state-of-the-art
ACS calculator and real-time predictors with 50.16% area under
precision-recall curve (AUCPRC) gain on average in terms of de-
tection effectiveness. In terms of earliness, our DyCRS can predict
15hrs55mins earlier on average than clinician’s diagnosis with the
recall of 60% and precision of 55%. Furthermore, Our DyCRS can
extract interpretable patients’ stages, which are consistent with pre-
vious medical postoperative complication studies. We believe that
our contributions demonstrate significant promise for developing a
more accurate, robust and interpretable postoperative complication
risk scoring system, which can benefit more than 50 million annual
surgeries in the US by substantially lowering adverse events and
healthcare costs.
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1 INTRODUCTION
Over 50 million surgeries are performed in the U.S. annually, with
surgical hospitalization costs rising to more than 30% of all inpa-
tient costs for the U.S. healthcare system (National Health Statistics
Reports, 2010). Complication rates range between 6%-47% and aver-
age cost per complication ranges from $675 to $2,800 for a urinary
tract infection (UTI), $27,000 for a surgical site infection (SSI) and
over $50,000 for ventilator-associated pneumonia [22, 29, 35]. Thus,
postoperative complications are a critical driver of healthcare expen-
ditures [3, 13]. Moreover, postoperative patients who are worked
up without complications unnecessarily incur significant morbidity
and healthcare expenditures [10]. Early identification of patients at
risk for postoperative complications, leading to timely and accurate
workups, may significantly reduce adverse events and readmission
rates [23, 41].

The current state-of-the-art postoperative complications risk
calculator is the American College of Surgeons National Surgical
Quality Improvement Program model (ACS NSQIP model [5, 8]).
ACS NSQIP is a widely used online web system as shown in Fig. 1.
It is a national, validated, outcome-based, risk-adjusted, and peer-
controlled program for measurement, benchmarking and enhance-
ment of the quality of surgical care [8]. It is designed for pre-
operative assessment which is necessary prior to the majority of
elective surgical procedures, to discuss surgery risk with patients
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Figure 1: Preoperative Risk Assessment ACS NSQIP Surgical
Risk Calculator Online Web System.

and ensure that the patient is fit to undergo surgery [33]. It uses
patients’ static features (e.g. gender, etc.) to calculate the risk of
postoperative complications.

On the other hand, real-time postoperative assessment is also
very important. Postoperative patients could be in a very fragile
state and vulnerable to postoperative complications due to surgical
trauma [17]. Although the patients’ vital signs are closelymonitored
after surgery, it heavily relies on the clinicians to discover the po-
tential risk of further complications from the dynamics of collected
data. If the sign of complications can’t be discovered in time, the
health condition will deteriorate rapidly and even lead to death [37].
Thus, automatically measuring the risk of complications in a real-
time way is necessary to improve early diagnosis and avoid related
adverse events. However, the ACS NSQIP model does not work
in postoperative assessment, since it lacks dynamic and real-time
capabilities to capture postoperative clinical sequence transition
dependency, as it is a static and one-shot prediction model. Better
methods are needed to detect the “at-risk” patients in a real-time
way for timely postoperative assessment.

Fig. 2 shows an example system for real-time postoperative com-
plication risk assessment. In common postoperative care, once the
surgery is done, multiple vital signs (e.g. blood pressure, white
blood cell counts, etc.) of the patients are taken sequentially and
closely. Besides, for any elective surgery, patients on admission
will provide their basic information (e.g. gender, comorbidities). We
aim to construct a real-time complication risk score based on these
sequential vital signs and patients’ static features as well.

However, there are several challenges in constructing a real-time
risk detection system in the postoperative setting:

• First, patients’ complication risk varies over time, but it de-
pends on all of the previous vital signs since there is a strong
sequential dependency among vital signs. Therefore widely
used real-time prediction methods (e.g. sliding windowmeth-
ods [20, 28, 40]) are limited in measuring the long-term
dependency and can only capture patients’ health status
changes within a fixed duration. So some meaningful and
representative clinical states that may be informative to the
clinically worsening can be discarded, therefore may fail.

Figure 2: Illustration of the Input and Output of Postopera-
tive Risk Assessment Real-time System.

• Second, medical data, especially surgery data, is very sparse
due to the privacy issue [30]. Besides, it is costly for hospitals
to maintain surgery electronic health warehouses since a
large amount of well-trained staff is needed to take care of
the monitoring and recording [15]. Thus, it is very hard to
train an extremely complicated model such as a deep neural
network-based model from a limited amount of training data.

• More importantly, the model must be interpretable for clin-
icians [11]. It should also be consistent with the current
results of medical research. Only in this way, the clinicians
can trust the model [14].

Our contributions. In this paper, we propose a dynamic inter-
pretable postoperative complication risk scoring (DyCRS) frame-
work to detect “at-risk” patients in real-time. DyCRS is able to
generate a real-time, probabilistic, complication risk score based
on the patients’ postoperative vital signs and static features (e.g.
gender). DyCRS is based on adaptations of Hidden Markov Model
(HMM). Specifically, we have the following four contributions:

• From the application perspective, different from the preop-
erative assessment–ACS NSQIP risk calculator online web
system, we propose a dynamic postoperative risk assessment
framework DyCRS to generate real-time risk score. The score
given by our system can be sent to clinicians’ mobile phones
in the future. It is convenient for clinicians to monitoring
the risk of patients at anytime and anywhere.

• From the methodology perspective, DyCRS combines two
existing adaptations of the Hidden Markov Model (HMM)
together to fit our setting: capturing observable states in
addition to hidden states [2] in the state space, and incorpo-
rating static features in addition to sequential features [32].
Based on that, we further develop a pipeline to convert the
discrete hidden states to the continuous risk score.

• We evaluate the effectiveness of DyCRS in comparison with
1. machine learning and deep learning real-time classifiers,
2. the widely used preoperative assessment – ACS NSQIP
surgical risk calculator, 3. the state-of-care postoperative
assessment commonly used by clinicians in hospitals–fever
criterion. Among all the competitors, the proposed DyCRS
significantly outperforms these baselines in terms of effec-
tiveness, earliness, and clinical significance.

• In contrast to existing methods that are almost “black-box”
predictors, we further demonstrate that our model can ex-
tract interpretable patients’ stages, which are consistent with
previous medical postoperative complication studies.
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2 PROBLEM SETUP
Our task is predicting complication risk in a real-time way based
on postoperative patients’ sequential and static features. We first
describe the data and then task formulation.

2.1 Dataset
The NorthShore University HealthSystem maintains an electronic
data warehouse (EDW) that captures information entered into pa-
tients’ electronic health records. Complication data were extracted
on all patients who underwent elective Colectomy surgery between
January 1, 2007, and December 31, 2013.

Features. Our complication data include three types of features.
• Sequential features. Five common postoperative vital signs
are taken sequentially and closely to monitor the postopera-
tive health condition during the inpatient stay: white blood
cell counts (1000s per microliter of blood), systolic blood pres-
sure (mm Hg), diastolic blood pressure (mm Hg), pulse rate
(pulses per minute) and body temperature (◦𝐹 ).

• Static features. Patients’ static features are also available in
EHR. Suggested by clinicians, we incorporate two informa-
tive static features for Colectomy surgery including gender
and uncomplicated diabetes in our model. 38 static features
in total are available for the comparison experiments.

• Time-to-events. During the inpatient stay, the time to clin-
ical worsening(first occurrence of the postoperative compli-
cations) is available for some patients. For clinically stable
patients, the time to discharge from the hospital is also avail-
able. We have two events: clinical worsening or discharge
from the hospital.

Data preprocessing. We first preprocess five vital signs to occur
at synchronous four-hour time intervals. Suggested by clinicians,
we use themaximumvalue of vital signswithin each 4-hour interval,
following common practice for tracking the onset of complications
in the hospital. Second, we use a linear interpolation method to
deal with missing values for each patient’s vital signs because we
assume the patients’ health condition will not change suddenly.
Finally, our dataset includes 526 patients with 12,666 time step data
points, each time step is associated with 5 vital signs. 119 (23%)
patients develop postoperative complications after surgery.

Preliminary analysis. Before we start to build a model, we
first do a simple data analysis to demonstrate the importance of
developing a real-time postoperative assessment system. We select
a representative static feature utilized by the ACS NSQIP risk cal-
culator system (i.e. age) and plot a histogram with respect to the
postoperative complications rates of patients. In comparison, we
also select a representative dynamic feature (i.e. average 24-hour
postoperative temperature before events) obtained from patients’
real-time vital signals to plot a histogram with respect to postopera-
tive complications rates. As shown in Fig. 3, the correlation between
static features of patients and their postoperative complication risk
is insignificant, whereas the real-time vital signals present a strong
positive correlation. The comparison again verifies that the tradi-
tional risk assessment tool relying on static features may not have
sufficient information to provide an accurate prediction of postop-
erative complications. However, with postoperative real-time vital
signals available, which are more able to reflect the actual physical
condition of the postoperative patients, it is possible to make a

(a) Preoperative assessment (b) Postoperative assessment

Figure 3: Preliminary data analysis of preoperative and post-
operative assessment. This shows the strong positive associ-
ation between postoperative information and complications
in contrast to no obvious association for preoperative infor-
mation and complications.

more informative prediction of possible complications and provide
more meaningful support for life-saving clinical decision making.

2.2 Task Formulation
In this section, we will first describe our modeling intuition, and
then explain the adaptations of our model based on HMM.

Modeling intuition. As shown in Fig 4, we randomly pick up
a clinical worsening and a discharged patient and plot their postop-
erative vital signs and time-to-event. Once the surgery is done, the
patient will be moved to the ward and enter into the monitoring
period. In the monitoring period, vital signs are taken sequentially
and closely to see if the patient shows any signs of postoperative
complications. Therefore, in this period, the patient bears some
latent risk of developing complications, but the event does not oc-
cur actually. To some point, the patient is clinical worsening and
complication occurs, the patient is transferring from bearing some
latent risk to observed adverse event with the certainly highest risk.
On the other hand, clinically stable patient will bear latent risk of
developing complications in the monitoring period, to some point,
the clinicians remove the patients’ latent risk and announce that the
patient can be discharged from the hospital, therefore the patient
transferring from bearing some latent risk to observed discharge
event with certainly no risk.

Therefore, the patients’ health condition can be represented by
the risk stages w.r.t postoperative complications during the inpa-
tient stay. In the monitoring period, the patients bear some latent
risk, which is an intermediate level of risk (e.g. low, medium, high
risk w.r.t complications). The observed clinical worsening event is
the highest risk stage since the patient has already encountered
an adverse event. The observed discharge event is no risk stage
since the risk is removed by clinicians. Thus, with the increasing
of severity, patients risk stages can be summarized as: no risk (ob-
served discharge event), intermediate level risk (latent risk stages),
highest risk (observed clinical worsening event) (See the conceptual
structure of modeling in Fig 5). No risk and highest risk stages are
observed, while the intermediate-risk stages are latent. Only the vi-
tal signs can be observed to infer the latent risk stages. So basically,
we need a model to capture the transition relationship between
all risk stages including latent and observed, and the relationship
between the multivariate vital signs and latent risk stages.

Besides, our goal is to propose a real-time risk score for patients.
After we learn the above two relationships, given a new patients’
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(a) A clinically worsening patient

(b) A discharged patient

Figure 4: Visualization of two patients’ vital signs and time-
to-event to demonstrate the modeling intuition.

vital signs, we can first decode the probability distribution of latent
risk stages, and using the transition relationship between latent
risk stage and observed clinically worsening event to construct a
risk score that represents the probability the patients will finally
encounter the worsening stage rather than discharge stage.

DyCRS. Hidden Markov Model (HMM) ([34]) is a well-known
probabilistic graphical model to capture the relationship between
latent states sequences and observed observations sequences. The
latent states will be represented by a multivariate Gaussian distribu-
tion to link with vital signs, this distribution is known as emission
probability. Besides, the probabilistic nature of HMM also provides
us with better interpretability compared to the black-box machine
learning algorithm [6], this is extremely important in health care
decision making contexts. Thus, it is very suitable to use HMM
in our case. We combine two existing adaptations of HMM and
proposed new adaptation together to fit in our setting:

• In our task, two observed states are available for each patient:
clinical worsening event or discharge event. Therefore, the
patient’s postoperative evolving risk stages trajectory will
be hidden until it ends at either clinical worsening state or
discharge state. Thus, we adopt the adapted HMM to capture
observed terminating states [2].

• In addition to postoperative sequential features, the patient’s
static features are also available and informative for postoper-
ative complications risk assessment. Hence, we also combine
the adapted HMM to incorporate patient static features in
emission probability [32].

• Besides the above two existing adaptations, we also develop
a pipeline to convert hidden states to the real-time risk score.
Given the estimated parameters of HMM(e.g. transition ma-
trix, emission probability), for a new patient vital signs, the

Figure 5: The conceptual relationship between all states in-
cluding latent and observed states, and the relationship be-
tween latent states and vital signs.

traditional decoding problem of HMM can only tell us the
most likely hidden states. However, the hidden states are
discrete(e.g. low risk state) instead of a real number, thus
it lacks the accuracy to quantify the complication risk. Be-
sides, it is also meaningless and abstract to show the patient
is in low risk stage, a real number that tells us what is the
probability the patients will get to complication event will
be more meaningful and straightforward.

3 MODEL AND ALGORITHM
In this section, we define our DyCRSmodel formally. At a high level,
our model contains two phases: (𝑖) a learning phase to learn the
transition relationship between hidden states and observed states,
and the relationship between hidden states and observations (e.g.
vital signs); (𝑖𝑖) a subsequent inference phase to convert the hidden
state to risk score.
3.1 Model Description
3.1.1 State Space. Given the three types of patient information,
we construct a discrete HMM H with hidden states and observed
states as shown in Fig. 6. Since three hidden states have a natural
medical explanation (e.g. low risk, medium risk, high risk), we
choose three hidden states in our model, but it can easily generalize
to any number of hidden states. In summary, the state space of H
contains five discrete states: discharge event (𝐷), three latent states
that correspond to increasing severity of patients’ health status (low
risk (𝐿), medium risk (𝑀), high risk (𝐻 )), and clinical worsening
event: occurrence of postoperative complications (𝐶). Note that
in our model, both 𝐶 and 𝐷 are absorbing states and they can be
observed, whereas the other three states (𝐿,𝑀 and 𝐻 ) are transient
and hidden. An absorbing state is a state that, once entered, cannot
be left. Therefore, we change the common Markov chain to the
absorbing Markov chain to incorporate the observed terminating
states. The absorbing Markov process will start at one of the three
transient states and has to finally enter either state 𝐶 or 𝐷 . We use
S to denote the set of states inH .

3.1.2 Observation Space. Observable outcomes are defined by pa-
tients’ five postoperative vital signs: white blood cell counts (1000s
per microliter of blood), systolic blood pressure (mm Hg), diastolic
blood pressure (mm Hg), pulse rate (pulses per minute) and body
temperature (◦𝐹 ). As a result, each patient’s observation at a spe-
cific time step can be described by a 5-dimension continuous vector
𝑜 ∈ R𝑑 with 𝑑 = 5.
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Figure 6: The probabilistic finite state machine of the HMM
H used in our DyCRS system. Low, medium and high risk
states are hidden states that represent the intermediate level
risk.𝐶 represents the clinical worsening event, and 𝐷 repre-
sents the discharge event. 𝐶 is the highest risk state, 𝐷 is no
risk state, both are observed.

3.1.3 Transition Probability Matrix. For an HMM H with𝑚 states
including hidden and observed states, the transition matrix 𝑇 ∈
R𝑚×𝑚
+ characterizes the probability of the model to transit from

one state to another. Formally, we define

𝑇𝑖 𝑗 := Pr(𝑠 ′ = 𝑖 | 𝑠 = 𝑗), ∀𝑖, 𝑗 ∈ S. (1)

By definition, it is easy to verify that𝑇 is a column-stochastic matrix
where each column sums to 1, i.e., 1𝑇𝑚𝑇 = 1𝑇𝑚 .

As shown in Fig. 6, our HMMH has 5 states, of which two are
absorbing states. For the convenience of discussion, we fix the order
of states to be S = {𝐷, 𝐿,𝑀,𝐻,𝐶}. Under this order, to represent
that both the 𝐶 and 𝐷 are absorbing states, the transition matrix 𝑇
is constrained to have the following structures:

𝑇11 = 𝑇55 = 1, 𝑇𝑖1 = 0, ∀𝑖 ≠ 1, 𝑇𝑗5 = 0, ∀𝑗 ≠ 5. (2)

The remaining elements of 𝑇 will be learned from the sequences of
observations and shared across all the patients.

3.1.4 Emission Probability Model. In this section, we describe in
detail the continuous emission probability model in our HMMH ,
which takes into account both vital signs and static features. To
simplify the notation, in the following derivation we omit the time
index 𝑡 and the patient index when they are clear from the context.
Let 𝑠 ∈ {0, 1}𝑚 be a one-hot vector that encodes the index of a state,
and 𝑟 ∈ R𝑝 be a patient static features vector that describes patient-
specific information, e.g., gender, uncomplicated diabetes, etc. We
assume that the observation follows a parametrized multivariate
Gaussian distribution whose mean parameter is a linear function
of both the hidden state 𝑠 and the patient heterogeneity vector 𝑟 :

𝑝 (𝑜 | 𝑠) = N(𝑊𝑠 +𝑀𝑟, 𝜎2𝐼𝑑 ), (3)

where𝑊 ∈ R𝑑×𝑚 is the weight matrix of the state-observation
relationship and𝑀 ∈ R𝑑×𝑝 is the static features-observation matrix
that characterizes how patient’s heterogeneous attribute affects the
observation. Without loss of generality, we assume an isotropic
covariance matrix in the above Gaussian distribution where the

variance of each dimension is given by 𝜎2. This assumption is by
no means restrictive and can be easily relaxed.

Remark. Note that in the Gaussian model we define in (3), the
variance parameter 𝜎2 is fixed apriori and in the learning process
our goal is to infer both weight matrices𝑊 and𝑀 , where 𝑠 is a one-
hot vector. In this case, each column vector of the weight matrix
𝑊 has a natural interpretation: it represents the mean value of the
observation vector given by the specific hidden state.

3.1.5 Initial Distribution. We learn the initial distribution of H
during the learning phase. Since both 𝐷 and𝐶 are absorbing states,
their corresponding initial probabilities are fixed to be 0. The other
three initial probabilities corresponding to 𝐿, 𝑀 and 𝐻 will be
estimated by the EM algorithm.

3.2 DyCRS Learning
Given a set of patients, where each patient corresponds to an ob-
servation sequence o𝑖 , we first learn the model parameters 𝑇,𝑊
and 𝑀 that maximize the probability of H generating the data.
Define 𝜃 := {𝑇,𝑊 ,𝑀} to be the set of model parameters. We use
the maximum likelihood principle (MLE) to formalize the learning
problem as an optimization problem:

max
𝜃

𝑛∑
𝑖=1

log𝑝 (o𝑖 | 𝜃 ), subject to 𝑇 ≥ 0, 1𝑇𝑚𝑇 = 1𝑇𝑚 (4)

where 𝑇 ≥ 0 is meant to be elementwise. Due to the existence of
hidden states, it is not hard to see that the optimization problem (4)
is nonconvex. In light of this intrinsic hardness, we propose a EM
algorithm for learning the model parameters.

3.2.1 Learning Transition Probability Matrix and Initial Distribution.
To clearly state the algorithm for learning the transition probability
matrix, given an observation sequence o of length 𝑡 , we first define
what we call the forward and backward probability.

Definition 3.1 (Forward probability). Given an HMM H and a
sequence o of observations of length 𝑡 , ∀𝑗 ∈ [𝑡], we define the
forward probability at time step 𝑗 as 𝛼 𝑗 (o) := 𝑝 (𝑠 𝑗 | 𝑜1:𝑗 ) ∈ R𝑚+ .

Definition 3.2 (Backward probability). Given an HMM H and
a sequence o of observations of length 𝑡 , ∀𝑗 ∈ [𝑡], we define the
backward probability at time step 𝑗 as 𝛽 𝑗 (o) := 𝑝 (𝑜 𝑗+1:𝑡 | 𝑠 𝑗 ) ∈ R𝑚+ .

For a specific observation vector 𝑜 ∈ R𝑑 , we define the observ-
able operator matrix 𝐴𝑜 w.r.t. 𝑜 as follows:

𝐴𝑜 := diag(𝑝 (𝑜 | 𝑠 = 1), . . . , 𝑝 (𝑜 | 𝑠 =𝑚)) ·𝑇 ∈ R𝑚×𝑚
+ , (5)

where the probability density function 𝑝 (· | ·) is given by (3). Fur-
thermore, we also need to compute the posterior belief state at each
time step 𝑗 , i.e., 𝛾 𝑗 := 𝑝 (𝑠 𝑗 | o). With the forward and backward
probabilities, the belief state can be easily computed as follows:

𝛾 𝑗 (o) = 𝑝 (𝑠 𝑗 | 𝑜1:𝑡 ) ∝ 𝑝 (𝑠 𝑗 | 𝑜1:𝑗 ) · 𝑝 (𝑜 𝑗+1:𝑡 | 𝑠 𝑗 ) = 𝛼 𝑗 (o) ◦ 𝛽 𝑗 (o),
(6)

where ◦ denotes the Hadamard product, i.e., elementwise product.
Similarly, we can also compute the probability of state transition

in the following way:

𝑝 (𝑠 𝑗 , 𝑠 𝑗+1 | o) ∝ 𝑝 (𝑠 𝑗 | 𝑜1:𝑗 ) · 𝑝 (𝑜 𝑗+1 | 𝑠 𝑗+1) · 𝑝 (𝑠 𝑗+1 | 𝑠 𝑗 ) · 𝑝 (𝑜 𝑗+2:𝑡 | 𝑠 𝑗+1)

= 𝐴𝑜 𝑗+1 ◦
(
𝛼 𝑗 (o)𝛽𝑇𝑗+1 (o)

)
. (7)
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To estimate the initial distribution, we use the averaged belief
state over all the sequences:

𝜋 =
1
𝑛

𝑛∑
𝑖=1

𝛾1 (o𝑖 ). (8)

To estimate the transition matrix, we sum all the expected state
transition counts over all the time steps in all the observation se-
quences:

𝑇 ∝
𝑛∑
𝑖=1

𝑡𝑖−1∑
𝑗=1

𝑝 (𝑠 𝑗 , 𝑠 𝑗+1 | o𝑖 ) . (9)

3.2.2 Learning Emission Probability Model. To learn the weight
matrices𝑊 and𝑀 in the emissionmodel, wemaximize the expected
log-likelihood function, which can be simplified to the following
weighted least square minimization problem:

min
𝑊,𝑀

𝑛∑
𝑖=1

𝑡𝑖∑
𝑗=1

𝑚∑
𝑘=1

𝛾 𝑗 (o𝑖 )𝑘 | |𝑜𝑖 𝑗 −𝑊:𝑘 −𝑀𝑟𝑖 | |2 (10)

where we use the notation𝑊:𝑘 to denote the 𝑘th column vector of
matrix𝑊 . The objective function in (10) is quadratic in both𝑊 and
𝑀 , hence the optimization problem is jointly convex.

Here we propose to use the block coordinate descent algorithm to
optimize the above objective function. Specifically, in each iteration,
we sequentially find the global optima solution for each column
vector𝑊:𝑘 in turn, given all the other parameters fixed. Then we
fix the updated weight matrix𝑊 and find the optimal solution for
matrix 𝑀 . To do so, we first derive the optimal solution for each
column vector𝑊:𝑘 ,∀𝑘 ∈ [𝑚]. To simplify the notation, we define
𝜏 :=

∑𝑛
𝑖=1 𝑡𝑖 to be the total number of observations from all the

sequences. Construct the following diagonal matrix Γ𝑘 :

Γ𝑘 := diag
(
{{𝛾 𝑗 (o𝑖 )𝑘 }𝑡𝑖𝑗=1}

𝑛
𝑖=1

)
∈ R𝜏×𝜏+

and stack all the column vectors 𝑜𝑖 𝑗 ,∀𝑗, 𝑖 into a matrix 𝑂 ∈ R𝑑×𝜏 .
Furthermore, for each 𝑟𝑖 , we also repeat it for 𝑡𝑖 times and stack all
such vectors into a matrix 𝑅 ∈ R𝑝×𝜏 . With these new definitions,
we can compactly represent the minimization problem w.r.t.𝑊:𝑘 as
the following matrix optimization problem:

min
𝑊:𝑘

| | (𝑂 −𝑀𝑅 −𝑊:𝑘1
𝑇
𝜏 ) Γ𝑘 | |2𝐹 , (11)

from which we can derive the optimal solution with analytic form:

�̂�:𝑘 :=
(𝑂 −𝑀𝑅) Γ2

𝑘
1𝜏

1𝑇𝜏 Γ2𝑘 1𝜏
. (12)

Note that here we define the huge and sparse matrix Γ𝑘 only for the
purpose of mathematical clarity. In practical implementation we
will never explicitly construct it. Instead, a column vector Γ2

𝑘
1𝜏 will

be constructed and used, which only takes 𝑂 (𝜏) time and space.
Analogously, to solve for𝑀 , we can compactly rewrite the opti-

mization problem w.r.t.𝑀 as:

min
𝑀

𝑚∑
𝑘=1

| | (𝑂 −𝑀𝑅 −𝑊:𝑘1
𝑇
𝜏 ) Γ𝑘 | |2𝐹 , (13)

and solve it in closed form as:

�̂� :=

(
𝑚∑
𝑘=1

(𝑂 −𝑊:𝑘1
𝑇
𝜏 ) Γ2𝑘𝑅

𝑇

) (
𝑅

𝑚∑
𝑘=1

Γ2
𝑘
𝑅𝑇

)−1
. (14)

The optimal solution �̂� can be computed in time 𝑂 (𝜏𝑑𝑝 + 𝑝3).

3.2.3 Overall Learning Algorithm. The overall learning algorithm
is an iterative method that can be understood as an EM algorithm
tailored to capturing patients’ static features and absorbing states.
In each iteration of the algorithm, for each observation sequence,
we first compute the forward and backward probabilities, from
which we could obtain the current belief state of each time step
in the sequence. This corresponds to the E-step of the algorithm
where we compute the expected complete-data log-likelihood func-
tion given current model parameters. In the M-step, we apply the
procedures derived in Sec. 3.2.1 and Sec. 3.2.2 to obtain updated
model parameters. Like the traditional EM algorithm, each iteration
is guaranteed to improve the marginal log-likelihood function of
the observation sequences, and the algorithm terminates if a sta-
tionary solution is found. We summarize the proposed algorithm
in Algorithm 1.

Each iteration of the algorithm takes time𝑂 (𝜏 (𝑚2+𝑑𝑝)+𝑝3). Fur-
thermore, since the weighted least square problem (10) is smooth
and convex, the block coordinate ascent subprocedure in Algo-
rithm 1 is guaranteed to find the global optimal solution of both
𝑊 and𝑀 in each EM iteration. Hence each EM iteration in Algo-
rithm 1 is guaranteed to increase the log-likelihood function, and
the algorithm is guaranteed to converge.

3.3 DyCRS inference: Converting Hidden
States to Complication Risk Score

Given the learned HMM H from the learning process, we start
to construct a dynamic complication risk score. The traditional
HMM’s decoding task can only tell us the most likely hidden states,
however, the hidden states are discrete instead of a real number
to quantify the complication risk. Besides it is meaningless and
abstract to show the patient is in low risk stage, a real number
that represents the probability the patients will get to complication
event will be more meaningful and straightforward. To build a risk
score, we develop a pipeline to convert the discrete hidden states to
the continuous complication risk score. At a high level, this pipeline
consists of two steps: (𝑖) decoding step: given a new patient vital
signs and static features up to time 𝑡 and learned HMM parameters,
we first decode the hidden states distribution for the patient. (𝑖𝑖)
converting step: then we convert the hidden states distribution
to complication risk score using the learned transition relationship
between hidden states and observed clinical worsening state (𝐶).

The complication risk score 𝐶𝑅𝑆𝑡 (o, 𝑟 ) at time step 𝑡 is defined
as the probability that the patient will end in the clinical worsening
state (𝐶) given her observation sequence o up to time 𝑡 and static
features vector 𝑟 . The score at time 𝑡 is given by:

𝐶𝑅𝑆𝑡 (o, 𝑟 ) :=
𝑚∑
𝑘=1

𝑝 (𝑠𝑡 = 𝑘 | 𝑜1:𝑡 , 𝑟 ) × 𝑝 (𝑠∞ = 𝐶 | 𝑠𝑡 = 𝑘), (15)

where 𝑝 (𝑠𝑡 = 𝑘 | 𝑜1:𝑡 , 𝑟 ) is decoded current hidden states distri-
bution. 𝑝 (𝑠∞ = 𝐶 | 𝑠𝑡 = 𝑘) is the absorption probability, i.e., the



DyCRS: Dynamic Interpretable Postoperative Complication Risk Scoring WWW ’20, April 20–24, 2020, Taipei, Taiwan

probability that the patient will finally end in the absorbing clinical
worsening state 𝐶 starting from current hidden state.

Decoding Step: Given the new patients’ vital signs and static
features and learned HMM parameters, we first decode the current
hidden states distribution 𝑝 (𝑠𝑡 = 𝑘 | 𝑜1:𝑡 , 𝑟 ) which is exactly the
forward probability 𝛼 𝑗 (o) at time 𝑡 . This term can be efficiently
calculated by the forward algorithm.

Converting Step: We further converting the hidden states dis-
tribution to complication risk score using the absorption probability
(starting from the current hidden state, the probability the patient
will be finally absorbed in clinical worsening state 𝐶). The absorp-
tion probability can be derived from the estimated transition matrix
in the following way:

With 2 absorbing states and 3 transient states in our model, the
learned transition matrix 𝑇 has the following canonical form:

𝑇 =

𝐷 𝐿 𝑀 𝐻 𝐶©­­­­«
ª®®®®¬

𝐷 1 𝑇𝐷𝐿 𝑇𝐷𝑀 𝑇𝐷𝐻 0
𝐿 0 𝑇𝐿𝐿 𝑇𝐿𝑀 𝑇𝐿𝐻 0
𝑀 0 𝑇𝑀𝐿 𝑇𝑀𝑀 𝑇𝑀𝐻 0
𝐻 0 𝑇𝐻𝐿 𝑇𝐻𝑀 𝑇𝐻𝐻 0
𝐶 0 𝑇𝐶𝐿 𝑇𝐶𝑀 𝑇𝐶𝐻 1

. (16)

Define 𝑝𝐷 := (𝑇𝐷𝐿,𝑇𝐷𝑀 ,𝑇𝐷𝐻 )𝑇 and 𝑝𝐶 := (𝑇𝐶𝐿,𝑇𝐶𝑀 ,𝑇𝐶𝐻 )𝑇 to
be the vectors that contain transition probabilities from transient
states 𝐿,𝑀,𝐻 to absorbing states 𝐷 and𝐶 , respectively. Denote the
middle 3 × 3 sub-matrix in 𝑇 as 𝑄 . Then the absorption probability
𝑝 (𝑠∞ = 𝐶 | 𝑠𝑡 ) can be computed as follows:

𝑝 (𝑠∞ = 𝐶 | 𝑠𝑡 ) =
∞∑
𝑗=0

𝑝 (𝑠𝑡+𝑗 = 𝐶 | 𝑠𝑡 ) = 𝑝𝑇𝐶

∞∑
𝑗=0

𝑄 𝑗 = 𝑝𝑇𝐶 (𝐼 −𝑄)−1 .

Combined with the formula for forward probabilities, the final
𝐶𝑅𝑆𝑡 (o, 𝑟 ) can be compactly represented and efficiently computed
as follows:

𝐶𝑅𝑆𝑡 (o, 𝑟 ) = 𝑝𝑇𝐶 (𝐼 −𝑄)−1𝛼𝑡 (o) . (17)
For a sequence of length 𝑡 , the score𝐶𝑅𝑆𝑡 (o, 𝑟 ) can be computed in
𝑂 (𝑡𝑚) time. Furthermore, using the forward algorithm, the update
of 𝐶𝑅𝑆𝑡+1 (o) from 𝐶𝑅𝑆𝑡 (o) could be finished in 𝑂 (𝑚) time.

The score is computed in real-time in the sense that when a new
vital sign is available, a new risk score will be calculated by the
DyCRS system. When the risk score is higher than a predefined
threshold, the DyCRS system will issue an alert. Otherwise, the
system will wait for new observations to re-score the complication
risk at the next time step. The overall system pipeline of inference
in our DyCRS system is shown in Fig. 7.

4 EXPERIMENTS
4.1 Experiment Setup
We compare the performance of the DyCRS framework with the
state-of-the-art methods from both the medical and machine learn-
ing research communities. Baselines include four categories:

Machine learning real-time predictors. The sliding window ap-
proach is a common and widely used real-time prediction tech-
nique [20, 28, 40]. We compare with support vector machines with
the radial based kernel (SVM), regularized logistic regression with
ℓ1 regularization (LASSO), random forest, AdaBoost, Bagging, and

Algorithm 1 Expectation-Maximization for DyCRS Learning

1: while not converged do
2: // E-step:
3: for 𝑖 = 1 to 𝑛 do
4: Compute 𝛼 𝑗 (o𝑖 ),∀𝑗 ∈ [𝑡𝑖 ] using the forward algorithm
5: Compute 𝛽 𝑗 (o𝑖 ),∀𝑗 ∈ [𝑡𝑖 ] using the backward algorithm
6: Compute belief state 𝛾 𝑗 (o𝑖 ) ∝ 𝛼 𝑗 (o𝑖 ) ◦ 𝛽 𝑗 (o𝑖 ),∀𝑗 ∈ [𝑡𝑖 ]
7: end for
8: // M-step:
9: Update initial distribution using (8)
10: Update transition matrix using (9)
11: // Block coordinate ascent:
12: while𝑊 or𝑀 has not converged do
13: for 𝑘 = 1 to𝑚 do
14: Fix all the other columns and update𝑊:𝑘 using (12)
15: end for
16: Fix𝑊 and update𝑀 using (14)
17: end while
18: end while

Figure 7: Flow chart of DyCRS real-time inference.

gradient boosting using the sliding window method. Specifically,
we use a fixed-size window to filter the vital signs before the event
occurs (clinical worsening or discharge). These fixed-length se-
quences will be used as training data to learn the patient health
conditions changes before the event occurrence. For the test set,
we move the sliding window step by step and use each model to
make a prediction, this predicted score will be used as a real-time
complication score. The static features used in the DyCRS frame-
work are also included to have a fair comparison. The size of the
sliding window is a hyperparameter that needs to be tuned for
each model. For the ensemble method like AdaBoost and Bagging,
we use a decision tree as each component in the ensemble. We
perform a grid search in {10, 50, 100} to find the optimal number of
components for ensemble methods. To find the optimal size of the
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sliding window, we also conduct a grid search for each model in
{12, 24, 36, 48} hours sequence prior to events.

Deep learning real-time predictor. We further compare with long
short-termmemory (LSTM), a deep learning technique formodeling
temporal data [26, 39]. Specifically, the input at each time step is a
7-dimensional vector since we have 5 vitals signs associated with
each time step and 2 static features. Inputs will be passed to the
hidden layers. On top of the hidden layer, we use the sigmoid layer
to squeeze the output to a risk score between 0 and 1. We perform
a grid search to find the optimal number of hidden layers (𝐻𝑙 )
and hidden size (𝐻𝑠 ) (𝐻𝑙 ∈ {1, 2, 3}, 𝐻𝑠 ∈ {20, 50, 80, 100}). Adam
optimizer is used to optimize the parameters. We set the batch size
as 32, the learning rate as 0.01. We train the LSTM for 200 iterations.

Pre-operative assessment: the state-of-the-art ACS NSQIP surgical
risk calculator. ACS NSQIP is a widely used surgical risk calculator
online web system in hospitals. It uses patients’ static features to
predict postoperative complications. ACS NSQIP has two stages:
static features selection and estimation. Similar to the feature selec-
tion process described in the original paper of ACS NSQIP [9], we
adopt recursive feature elimination to select features by recursively
considering smaller and smaller sets of features. In the selection
process, the estimator is trained on the original set of features and
the importance of each feature is obtained via the coefficients of
the estimator. The least important features are removed from the
current set of features. The selection procedure is recursively re-
peated on the pruned set until the desired number of features to
select is eventually achieved. For the estimator, it uses general-
ized linear mixed models that capture the random effects across
hospitals and procedures. However, our dataset comes from one
hospital and is only for elective Colectomy surgery, therefore the
model can be reduced to logistic regression. As a result, we use
logistic regression as the estimator directly. The number of features
is a hyperparameter to be tuned, and we perform a grid search on
{5, 10, 15, 20, 25, 30, 35} to find the optimal one.

Postoperative assessment: fever criterion used by clinicians in hos-
pitals. Simple fever criterion is commonly used by clinicians as an
indicator of potential complications once the surgery is over. Fever
criterion is defined as: temperature > 100.4𝑜𝐹 . Therefore, when
patients’ postoperative temperature sequences after surgery and
before event occurrence are greater than 100.4 𝑜𝐹 , the patient will
be labeled as a complication patient.

We use 5-fold stratified cross-validation. For each fold, we train
the model using three parts, use one part for validation and the rest
one part to report as the test score. The validation set is used for
feature selection for the ACS NSQIP model and hyperparameter
tuning for all the methods. We report the average test results.

4.2 Performance Metrics
To measure the performance of all real-time methods including the
proposed DyCRS system and real-time baselines, we calculate risk
score at each time step for all patients in our test set. Each patient
will have a sequence of risk scores, and whenever the risk score
exceeds the threshold, the targeted “at-risk” patients are found.
The time when the risk score exceeds the threshold is denoted as
𝑇𝑒𝑥𝑐𝑒𝑒𝑑 , and the event occurrence time (either clinical worsening or
discharge) is denoted as 𝑇𝑒𝑣𝑒𝑛𝑡 . We discuss the choice of threshold
in more detail in the results part.

Accuracymetrics. We first look at the recall and precision rates.

Recall =
# correctly predicted complication patients

# complication patients
(18)

Precision =
# correctly predicted complication patients

# predicted complication patients
(19)

Earliness metric. Then we also want to see how early our real-
time prediction can predict (𝑇𝑒𝑥𝑐𝑒𝑒𝑑 ) ahead of clinician’s decision
(𝑇𝑒𝑣𝑒𝑛𝑡 ). A larger earliness is desired since the sooner we can detect
“at-risk” patients, the better it will help us to take measures to
prevent it from causing greater adverse effects. We follow the [45]
to define the earliness as:

Earliness = E[𝑇𝑒𝑥𝑐𝑒𝑒𝑑 −𝑇𝑒𝑣𝑒𝑛𝑡 ], (20)

where the expectation is taken over all the correctly predicted
complication patients.

Clinical significance metric. To further demonstrate the clin-
ical significance of DyCRS system, we look at the number of false
alarms per one correct alarm defined as:

# discharged patients predicted as complication patients
# correctly predicted complication patients

(21)

A lower number of false alarms per one correct alarm is desired,
and it means we have more confidence to generate the alarms.
4.3 Results
Overall comparison. We use the area under the precision-recall
curve (AUCPRC) to sweep all possible thresholds to have a fair and
aggregated-level comparison. Note that we use a precision-recall
curve instead of the receiver operating characteristic (ROC) curve
since our data is slightly imbalanced. Previous studies show that
the precision-recall curve is more informative than the ROC curve
when evaluating on imbalanced datasets [36].

As shown in Table 1, our proposed DyCRS achieves the best
AUCPRC (0.52) and significantly outperforms all the other machine
learning, deep learning algorithms, and state-of-the-art ACS NSQIP
calculator (𝑝 < 0.01) with 50.16% gain on average. We can also find
that one-shot and static ACS NSQIP calculator works worse than
DyCRS and other machine learning real-time predictors. This indi-
cates that only using the patients’ static features can not effectively
detect postoperative complications. Instead, the postoperative vital
signs can better reflect the actual physical condition of the pa-
tient after surgery, therefore are more informative to predict the
postoperative complications than static features. To conclude, our
proposed DyCRS, which can dynamically detect using both dy-
namic vital signs and static features, can be a better choice in terms
of detection effectiveness.

For real-time predictors, our DyCRS works better than all the
machine learning real-time predictors based on the sliding window.
This indicates the sliding window method using partial instead of
full postoperative sequence are limited in measuring the long-term
dependency and can only capture patients’ health status changes
within a fixed duration, hence some meaningful and representative
clinical states that may be informative to the clinically worsening
can be discarded, and as a result these methods may fail. For LSTM,
the experimental results show that it always predicts trivial results
like random guessing (e.g. always predict 0 rather than 1), which
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Algorithms AUCPRC
Mean Std(%)

DyCRS 0.52 1.55
GradientBoosting 0.40 1.99
AdaBoost 0.42 2.83
Bagging 0.36 2.09
RandomForest 0.37 3.09
LASSO 0.35 2.15
SVM 0.34 2.69
ACS NSQIP 0.34 2.33
LSTM 0.25 1.43

Table 1: Overall Performance Comparison. ProposedDyCRS
significantly outperforms other baselines (𝑝 < 0.01).

Figure 8: Trade off between precision and recall rate. DyCRS
consistently outperforms other baselines.

may due to the fact that it is difficult to train a deep learning model
using sparse medical data. Therefore, we will exclude the LSTM in
the following analysis.

Practical implications: trade-off between precision and re-
call rate. To show the practical implications, we further plot the
trade-off between precision and recall rate in Fig. 8. On the one
hand, for any specific recall rate, DyCRS achieves a significantly
higher precision rate than benchmark methods. This means that
if we fix the number of complication patients to identify, DyCRS
will generate much less false alarms. For example, fixing a recall of
40%, DyCRS achieves a precision rate of 60%, which is 15.4% better
than the best baseline (AdaBoost). This indicates DyCRS is more
accurate with generated complication alarms and thus could reduce
alarm fatigue [38]. On the other hand, for any specific precision
rate, the DyCRS system can detect significantly more postoperative
complications patients.

The common postoperative assessment used by clinicians in the
hospital, e.g., the fever criteria, does not work well (with a recall
of 43% and precision of 32%). For the same recall rate of 43%, our
DyCRS achieves a 92% higher precision rate than it. In fact, the fever
criteria are worse than both ACS NSQIP and real-time predictors.
This indicates that fever criteria alone are not a good indicator of
postoperative complications.

Figure 9: Earliness to measure how early can different algo-
rithms predict prior to clinicians decision. GB, AB, RF rep-
resents gradient boosting, AdaBoost, random forest.

Figure 10: Clinical significance: the number of false alarms
per one correct alarm. GB, AB, RF represents gradient boost-
ing, AdaBoost, random forest.

Earliness and clinical significance. How “early" can these al-
gorithms predict is another important aspect to measure. As shown
in Fig. 9, DyCRS can predict 15hrs55mins earlier than the clinician’s
diagnosis with a recall of 60%, and DyCRS is 3hrs56mins earlier
than other real-time predictors on average. This is also true for
recall of 50% and 70%. The earliness of DyCRS will provide clini-
cians with an opportunity to take treatment actions before patients
deteriorate, and this will potentially reduce the adverse events and
save healthcare costs.

To further show the clinical significance of DyCRS, we present
the number of false alarms per one correct alarm in Fig. 10. For
recall of 50%, DyCRS will generate only 0.74 false alarms per correct
alarm. As a comparison, most other baselines will generate more
than double false alarms as that of DyCRS. This indicates DyCRS is
more confident about its alarms and potential will reduce the alarm
fatigue [38] and improve hospital resource utilization as compared
to other baselines.

Interpretability: consistent with previousmedical postop-
erative complications studies. The estimated mean value of each
vital sign conditioned on the three hidden statesare summarized in
Table 2. We expect 𝐿,𝑀 , 𝐻 to represent the increasing level of risk
w.r.t. complications (e.g. low risk, medium risk, high risk). Com-
pared with 𝐿,𝑀 is a higher risk level w.r.t complications, since most
criteria of𝑀 are higher than those of 𝐿, this is supported by previous
medical studies that increased postoperative vital signs are associ-
ated with increased postoperative complications risk [25]. Specifi-
cally, systolic blood pressure and diastolic blood pressure exceed
the normal range (less than 120 (systolic BP) over 80 (diastolic BP)).
Compared to𝑀 , the average white blood cell counts conditioned
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Table 2: Estimated Mean of Vital Signs Conditioned On
Three Hidden States. WBC: white blood cell counts; BP:
blood pressure. 𝐿,𝑀 , 𝐻 : low, medium, high risk states.

Vital Signs 𝐿 𝑀 𝐻 Normal Range

WBC 8.37 9.30 13.02 4.5-11.0
(109 cells per liter)
Systolic BP (mm Hg) 120.69 150.78 126.87 <120 over 80
Diastolic BP (mm Hg) 64.08 80.49 68.59 <120 over 80
Pulse rate (𝑚𝑖𝑛−1 ) 77.26 85.37 103.02 60-100
Temperature (𝑜𝐹 ) 98.45 98.43 98.84 97-99

on high risk state is around 13.02, which significantly exceeds the
normal range of 4.5-11.0. This indicates potential infection, stress,
inflammation, trauma, allergy, or certain diseases. This estimation is
supported by previous postoperative complication medical studies
that an abnormal postoperative white blood cell counts indicate the
patients are at great risk of infectious complications [21, 24]. We
also observe that the average pulse rate conditioned on 𝐻 is 103.02,
which is higher than the normal range of 60-100. Thus, our DyCRS
can extract interpretable patients’ stages, which are consistent with
previous medical postoperative complication studies.

We also present the estimated transition matrix in (22). We find
that the low risk states (𝐿) have the highest probability of transfer to
discharge event (𝐷) compared to the other two intermediate-level
risk states. This further indicates the low risk state has the smallest
risk level among all the hidden states. On the other hand, high
risk states have the highest probability to transfer to the clinical
worsening event (𝐶). This strengthens the increasing risk severity
from low to high risk states in addition to the above estimated mean
of vital signs conditioned on hidden states.

𝑇 =

D L M H C©­­­­«
ª®®®®¬

D 1 0.043 0.033 0.013 0
L 0 0.919 0.026 0.014 0
M 0 0.027 0.920 0.026 0
H 0 0.004 0.014 0.932 0
C 0 0.008 0.007 0.016 1

. (22)

5 RELATEDWORK
Postoperative complication risk stratification. Most prior re-
search has focused on using preoperative risk factors to stratify post-
operative complication risks [9, 18]. Somework focus on developing
procedure-specific surgical risk predictors(colorectal surgery [8],
bariatric surgery [16], etc.). Others create universal postoperative
complication risk calculators, which are procedure-free and can
capture the random effects of different hospitals [5]. These com-
plication risk calculators are static and one-shot predict, Thus lack
dynamic to capture the patients’ changing postoperative health con-
ditions. Different from them, our DyCRS is a dynamic complication
risk scoring framework that can monitor the patient’s complication
risk in a real-time manner.

Real-time prediction. Real-time predictions are prevalent in
many healthcare applications, including disease progression model-
ing [27, 31, 42], critical care prognosis [1, 2, 45], and readmission [4].
Most clinical real-time risk prediction are based on sliding window

approach with machine learning algorithms, e.g., SVM [43], logistic
regression [19], etc. They train the model on the fixed-size win-
dow before the occurrence of events, then get the real-time score
by moving the sliding window step by step on test sets. However,
these methods can only capture patients’ health status changes
within a fixed duration, thus can not model the entire postoperative
trajectory before events. In this way, some meaningful and repre-
sentative clinical states which may be informative to the events can
be discarded. Besides, recent work has explored deep learning tech-
niques (recurrent neural networks [7], Long-short term memory
(LSTM) [26]) tomake real-time predictions in healthcare application.
However, these approaches often require a large amount of training
data, which can be expensive or difficult to obtain for surgery pa-
tients due to the privacy issue. Furthermore, it is often very hard to
interpret the predictions obtained from these approaches, which is
extremely vital and relevant for healthcare applications. Different
from them, our DyCRS can learn the interpretable and meaningful
representation that is consistent with the previous postoperative
complication studies in medical research.

Time-series classification. Postoperative vital signs are es-
sentially time-series data, therefore our work is also related to
time-series classification. [12] extracted behavioral rhythms from
wearable time-series data and used the extracted features to predict
readmission. [44] proposed to use association rule mining to model
the relationship between behavioral features to provide better de-
pression prediction performance. However, these works focus on
outputting a label for each entire sequence. Our work studies a
different setting: in the postoperative setting, the patients’ vital
signs arrive step by step, therefore our DyCRS aim to give the
postoperative complication risk score in a real-time manner, i.e.,
calculate the probability that the patient will have a complication
at each time step when the new vital signs arrive.

6 CONCLUSION AND FUTUREWORK
In this paper, different from the state-of-the-art ACS NSQIP risk
calculator which is preoperative assessment using patients’ static
features, we propose a new dynamic postoperative complication
risk scoring framework that can score a patient in real-time us-
ing five postoperative vital signs and patients’ static features. We
demonstrate the superior predictive ability of our proposed DyCRS
system compared to machine learning and deep learning methods,
and the state-of-care in the medical area including ACS NSQIP cal-
culator and a fever criterion approach commonly used by clinicians.
In addition to effectiveness, we also demonstrate that our model can
extract the interpretable patients’ stages which are consistent with
previous medical postoperative complication studies, therefore the
clinicians can trust our model as compared to the “black-box” pre-
dictors. In future work, we are interested in evaluating the DyCRS
with clinicians in actual usage settings.
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