
34

GeoBurst+: Effective and Real-Time Local Event Detection

in Geo-Tagged Tweet Streams

CHAO ZHANG, DONGMING LEI, QUAN YUAN, and HONGLEI ZHUANG, University

of Illinois at Urbana-Champaign

LANCE KAPLAN, US Army Research Laboratory

SHAOWEN WANG and JIAWEI HAN, University of Illinois at Urbana-Champaign

The real-time discovery of local events (e.g., protests, disasters) has been widely recognized as a fundamental

socioeconomic task. Recent studies have demonstrated that the geo-tagged tweet stream serves as an un-

precedentedly valuable source for local event detection. Nevertheless, how to effectively extract local events

from massive geo-tagged tweet streams in real time remains challenging. To bridge the gap, we propose a

method for effective and real-time local event detection from geo-tagged tweet streams. Our method, named

GeoBurst+, first leverages a novel cross-modal authority measure to identify several pivots in the query

window. Such pivots reveal different geo-topical activities and naturally attract similar tweets to form can-

didate events. GeoBurst+ further summarizes the continuous stream and compares the candidates against

the historical summaries to pinpoint truly interesting local events. Better still, as the query window shifts,

GeoBurst+ is capable of updating the event list with little time cost, thus achieving continuous monitoring

of the stream. We used crowdsourcing to evaluate GeoBurst+ on two million-scale datasets and found it

significantly more effective than existing methods while being orders of magnitude faster.

CCS Concepts: • Information systems→Datamanagement systems; Spatial-temporal systems;Data

mining;Web mining; Information retrieval;

Additional Key Words and Phrases: Event detection, local event, location-based service, data stream, social

media, spatiotemporal data mining

ACM Reference format:

Chao Zhang, Dongming Lei, Quan Yuan, Honglei Zhuang, Lance Kaplan, Shaowen Wang, and Jiawei Han.

2018. GeoBurst+: Effective and Real-Time Local Event Detection in Geo-Tagged Tweet Streams. ACM Trans.

Intell. Syst. Technol. 9, 3, Article 34 (January 2018), 24 pages.

https://doi.org/10.1145/3066166

1 INTRODUCTION

1.1 Motivation

A local event (e.g., protest, crime, disaster, sports game) is an unusual activity bursted in a local
area and within specific duration while engaging a considerable number of participants. The
real-time discovery of local events has been recognized as an important task for a wide spectrum
of applications. Consider disaster control as an example. By detecting emergent disasters (e.g.,

Authors’ addresses: C. Zhang, D. Lei, Q. Yuan, H. Zhuang, S. Wang, and J. Han, 201 N. Goodwin Ave., Urbana, IL 61801,

USA; emails: {czhang82, dlei5, qyuan, hzhuang3, shaowen, hanj}@illinois.edu; L. Kaplan, 2800 Powder Mill Rd, Adelphi,

MD 20783, USA; email: lance.m.kaplan.civ@mail.mil.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 2157-6904/2018/01-ART34 $15.00

https://doi.org/10.1145/3066166

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

https://doi.org/10.1145/3066166
mailto:permissions@acm.org
https://doi.org/10.1145/3066166

34:2 C. Zhang et al.

earthquakes, fires) in real time, we can send alarms to the populace at the very first moment when
these disasters break out. Such real-time alarms are expected to be much faster than traditional
reports [8, 29, 45] and thus allow for timely response to avoid huge life and economic losses. As
another example, with an intelligent detector that continuously extracts interesting local events, it
is feasible to achieve effective personalized activity recommendation in the urban space. Suppose
a user is interested in sport games and music festivals: the detector can easily identify related
events with a few filtering keywords and continuously feed the user with events of interest.
While the real-time detection of local events was nearly impossible years ago due to the lack

of reliable data sources, the explosive growth of geo-tagged tweet data brings new opportunities
to it. With the ubiquitous connectivity of wireless networks and the wide proliferation of mobile
devices, more than 10 million geo-tagged tweets are created in the Twitterverse every day. Each
geo-tagged tweet, which contains a text message, a timestamp, and a geo-location, provides a
unified 3W (what-when-where) view of the user’s activity. For example, when the tragic 2011
Tohoku Earthquake hit Japan on March 11, 2011, thousands of related geo-tagged tweets were
created instantly; and when the Baltimore Riot took place in April 2015, many people posted
geo-tagged tweets to broadcast it right on the spot. Its sheer size, multifaceted information,
and real-time nature make the geo-tagged tweet stream an unprecedentedly valuable source for
detecting local events.

1.2 Challenges

Our goal is to achieve real-time and effective local event detection from geo-tagged tweet streams.
The challenge of this problem is threefold:

• Integrating diverse types of data. The geo-tagged tweet stream involves three different data
types: location, time, and text. Considering the totally different representations of those
data types and the complicated cross-modal interactions among them, how to effectively
integrate them for local event detection is challenging.

• Capturing the semantics of short text. Since every tweet is limited to 140 characters, the
semantics of the user’s activity is expressed through short and sparse text messages. Com-
pared with traditional documents (e.g., news), it is much more difficult to capture the se-
mantics of short tweet messages and extract high-quality local events.

• Online and real-time detection. When a local event outbreaks, it is key to report the event
instantly to allow for timely actions. As massive geo-tagged tweets stream in, the detector
should work in an online and real-time manner instead of a batch-wise and inefficient one.
Such a requirement is the third challenge of our problem.

Recently, there has been increasing interest in leveraging social media for modeling people’s
spatiotemporal activities in the physical world, addressing tasks like event detection [1, 3, 6, 13,
14, 19, 21, 33], geographical topic discovery [9, 17, 18, 31, 39], and mobility modeling [36, 37, 40].
Among them, [3, 14, 21, 33] are very related to our problem as they also aim to extract interesting
events on Twitter, but they are all designed to detect global events instead of local events. Unlike
global events that are bursty in the entire stream, local events are “bursty” in a small geographical
region and involve much fewer tweets. Such local bursts cannot be readily captured by global
event detection methods. A few methods tailored for local event detection [1, 6, 13, 19] have been
introduced. Nevertheless, most of them process the geo-tagged tweet data in a batch manner, and
none of them can support real-time local event detection from geo-tagged tweet streams.

1.3 Contributions

We propose an effective and real-time local event detector called GeoBurst+. Our insight be-
hind the design of GeoBurst+ is that, as a local event outbreaks, there are usually a considerable

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

GeoBurst+: Effective and Real-Time Local Event Detection in Geo-Tagged Tweet Streams 34:3

number of geo-tagged tweets around the occurring place (e.g., many participants of a protest may
post tweets on the spot). As such, tweets are geographically close and semantically coherent, form
a geo-topical cluster, and serve as a potential local event. However, not necessarily does every
geo-topical cluster correspond to a local event. First, the cluster may not be spatiotemporally un-

usual. A geo-topical cluster could be just a routine regional activity (e.g., many shopping-related
tweets are posted on Fifth Avenue in New York every day) or geographically scattered discussions
(e.g., a popular TV show may result in several geo-topic clusters in different regions). Second, the
cluster may not be spatiotemporally bursty. A cluster that contains a limited number of tweets may
be just random babbles from users instead of interesting local events. Therefore, we claim that a
geo-topical cluster should be spatiotemporally unusual and bursty to form a local event, and it is
necessary to carefully judge each candidate to pinpoint true local events.
Motivated by the above, GeoBurst+ first finds all geo-topical clusters in the query window

based on a novel authority measure. The measure quantifies a tweet’s geo-topical authority by
combining the geographical and semantic contributions from its similar tweets, where the geo-
graphical side is captured with a kernel function, and the semantic side is captured with random
walk on a keyword co-occurrence graph. With the authority measure, we design an authority
ascent procedure to identify all pivot tweets, which are essentially authority maxima in the geo-
topical space. Such pivots reflect different representative activities in the query window and nat-
urally attract similar tweets to form geo-topical clusters as candidate events.
To judge whether each candidate is indeed an interesting local event, GeoBurst+ consists of

a summarization module that summarizes the continuous geo-tagged tweet stream. The obtained
summaries not only encode the typical activities in different geographical regions but also capture
the subtle semantics of different keywords and tweets by embedding them into a latent space. Re-
lying on the summaries, we compare each candidate event against the routine activities to extract
a set of discriminative features, which allow us to train a classifier to accurately determine whether
each candidate is a true local event.
Better still, as the query window shifts, GeoBurst+ does not need to extract new local events

from scratch. Instead, it features an updating module that updates the event list continuously as
new geo-tagged tweets stream in. The updating incurs little time cost because authority computa-
tion, which is the most time-consuming operation in GeoBurst+, can be completed by subtracting
the contributions of the outdated tweets and emphasizing the contributions of the new ones. Such
an updating module enables effective monitoring of the tweet stream to report local events in a
real-time and continuous manner.
The major contributions of this work are summarized as follows:

(1) We design GeoBurst+ for local event detection in geo-tagged tweet streams. The effec-
tiveness of GeoBurst+ is underpinned by a novel cross-modal authority measure that
generates candidate events, along with a module that summarizes the continuous tweet
stream to accurately pinpoint true local events.

(2) With the additive property of the authority score, we design an updating module for
GeoBurst+. It fast updates the event list when the query window shifts, and thus enables
real-time and continuous local event detection. To the best of our knowledge, GeoBurst+
is the first method that can achieve real-time local event detection from geo-tagged tweet
streams.

(3) We perform extensive experiments on millions of geo-tagged tweets in two different cities
and evaluate the results using a crowdsourcing platform. Our results demonstrate that
GeoBurst+ significantly outperforms state-of-the-art methods in effectiveness, and runs
orders of magnitude faster.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

34:4 C. Zhang et al.

Fig. 1. Example geo-topical

clusters.

Fig. 2. The framework of GeoBurst+.

A preliminary version of GeoBurst+ has been presented in [41]. Compared with the prelimi-
nary version, our GeoBurst+ method employs a new supervised framework for selecting the true
local events, while the previous GeoBurst method ranks all the candidates and selects the top-K
bursty ones. In addition, GeoBurst+ performs keyword embedding to capture the subtle seman-
tics of tweet messages, which is also a new component. The major advantage of the GeoBurst+
method over its preliminary version is twofold: (1) it frees us from manually designing ranking
functions and removes the inflexibility of rigid top-K selection for every query window, and (2)
it can easily incorporate other signals (e.g., embedding-based features) that can help characterize
true local events to achiever better effectiveness. Our experiments verify that both the supervised
framework and the keyword embedding technique are useful in improving the detection effective-
ness considerably.

2 PRELIMINARIES

In this section, we formulate the real-time local event detection problem and then explore several
of its characteristics, which motivate the design of GeoBurst+.

2.1 Problem Description

LetD = (d1,d2, . . . ,dn , . . .) be a continuous stream of geo-tagged tweets that arrive in chronolog-
ical order. Each tweet d is a tuple 〈td , ld ,Ed 〉, where td is its post time, ld is its geo-location, and Ed
is a bag of keywords. For each tweet, we use an off-the-shelf tool [12] to extract verbs and nouns
as its keywords. Note that such preprocessing does not affect the generality of our method, and
one can also represent each tweet message as a bag of uni-grams for simplicity.
Consider a query time window Q = [ts , te], where ts and te are the start and end timestamps

satisfying td1 ≤ ts < te ≤ tdn . The local event detection problem consists of two subtasks: (1) ex-
tract from D all the local events that occur during Q and (2) monitor the continuous stream D
and update the local event list in real time as Q shifts continuously.

2.2 GeoBurst+ Overview

We provide the following insights about the key factors that characterize a local event:

• A local event often results in a group of relevant tweets around its occurring location. Take Fig-
ure1 as an example. Suppose a protest occurs on Fifth Avenue in New York; many partici-
pants may post tweets on the spot to express their attitude, with keywords such as “protest”
and “rights.”We call such a set of tweets a geo-topical cluster as they are geographically close
and semantically coherent.

• A local event is spatiotemporally unusual. Not necessarily does every geo-topical cluster
correspond to a local event. Continue with the example in Figure 1. During almost any hour,
we can observe many shopping-related tweets on Fifth Avenue. Although such tweets also

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

GeoBurst+: Effective and Real-Time Local Event Detection in Geo-Tagged Tweet Streams 34:5

form a geo-topical cluster, they do not reflect any unusual activities. Meanwhile, the cluster
may correspond to a global event instead of a local one. For instance, when a popular TV
show like “Game of Thrones” goes online, we can observe geo-topical clusters discussing it
in different regions. Such geo-topical clusters do not correspond to local events as well.

• A local event is spatiotemporally bursty. Even if the cluster is spatiotemporal unusual, it may
not be an interesting event if it has a small size. Previous research has shown that about 40%
of tweets are just user babbles. As such, the geo-topical clusters that are not spatiotempo-
rally bursty may be just uninteresting babbles from a few users instead of meaningful local
events.

We claim that a local event is a geo-topical cluster that is spatiotemporally unusual and shows

clear spatiotemporal burstiness. Based on the above insights, we design the framework of
GeoBurst+ in Figure 2. As shown, there are three key modules: (1) the candidate generator, (2)
the summarization module, and (3) the online updater. First, the candidate generator detects all
geo-topical clusters in the query window and regards them as candidates—this step ensures high
coverage of the underlying local events. The discovery of geo-topical clusters relies on a novel
authority measure that captures the cross-modal correlations among the geo-tagged tweets, as
well as a novel nonparametric procedure for detecting all the authority maxima. Second, the sum-

marization module performs continuous summarization of the stream and extracts background
knowledge to classify the candidate events. It consists of (1) an activity timeline that stores the
typical activities in different regions and (2) an embedding learner that derives low-dimensional
embeddings for any ad hoc tweets. The activity timeline allows for quantifying the spatiotemporal
burstiness of each candidate event, while the embedding learner captures the intrinsic semantics
of the short tweets to measure unusualness. Those two components collectively enable us to ex-
tract a set of discriminative features for each candidate event and thus select out true local events.
Third, the online updater can update the result list in real time as the query window shifts. It will
be shown shortly that the authority score satisfies an additive property. Hence, instead of find-
ing new candidates from scratch when the query window shifts, we can identify them by simply
updating the authority scores and then performing fast authority ascent.

3 THE CANDIDATE GENERATOR

In this section, we describe the candidate generator of GeoBurst+. Given a query window Q and
the set DQ of tweets falling in Q , the candidate generator is to divide DQ into several geo-topical
clusters, such that the tweets in each cluster are geographically close and semantically coher-
ent. The clustering of DQ , however, poses several challenges: How to combine the geographical
and semantic similarities in a reasonable way? How to capture the correlations between different
keywords? How to generate quality clusters without knowing the suitable number of clusters in
advance?
To address these challenges, we perform a novel pivot-seeking process to identify the centers

of geo-topical clusters. Our key insight is that the spot where the event occurs acts as a pivot that
produces relevant tweets around it; the closer we are to the pivot, the more likely we are to ob-
serve relevant tweets. Therefore, we define a geo-topical authority score for each tweet, where the
geographical influence among tweets is captured by a kernel function, and the semantic influence
by random walk on a keyword co-occurrence graph. With this authority measure, we develop an
authority ascent procedure to retrieve authority maxima as pivots; each pivot naturally attracts
similar tweets to form a quality geo-topical cluster. Below, we first introduce our geo-topical au-
thority measure to define pivot tweets, and then develop an authority ascent procedure for pivot
seeking.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

34:6 C. Zhang et al.

3.1 Pivot Tweet

3.1.1 Geographical Proximity. Given two tweets d and d ′, we measure the geographical prox-
imity of d ′ to d as G (d ′ → d) = K (‖ld − ld ′ ‖/h), where K (·) is a kernel function, ‖ld − ld ′ ‖ is the
geographical distance between d and d ′, and h is the kernel bandwidth. While various kernel func-
tions can be used, we choose the Epanechnikov kernel here due to its simplicity and optimality in
terms of bias-variance tradeoff [7]. With the Epanechnikov kernel, G (d ′ → d) becomes

G (d ′ → d) =

{
c (1 − ‖ld − ld ′ ‖2/h2) if ‖ld − ld ′ ‖ < h
0 otherwise,

(1)

where c is a scaling constant of the Epanechnikov kernel.

3.1.2 Semantic Proximity. As each tweet message is represented by a bag of keywords, a very
straightforward idea formeasuring semantic proximity is to compute the vector similarity between
two tweetmessages. Nevertheless, the effectiveness of vector similarity is limited, not only because
tweets are short in nature, but also because the dimensions (keywords) are correlated instead of
independent. To overcome these drawbacks, we propose a random-walk-based approach to capture
semantic proximity more effectively.

Definition 3.1 (Keyword Co-occurrence Graph). The keyword co-occurrence graph for DQ is an
undirected graph G = (V ,E), where (1) V is the set of all keywords in DQ , and (2) E is the set of
edges between keywords, and the weight of an edge (ei , ej) is the number of tweets in which ei
and ej co-occur.

The keyword co-occurrence graph can be easily built from DQ . With such a graph, we employ
random walk with restart (RWR) to define keyword similarity as it uses the holistic graph structure
to capture node correlations. Consider a surfer who starts RWR from the keyword x0 = u. Suppose
the surfer is at keyword xt = i at step t , and she returns to u with probability α (0 < α < 1) and
continues surfing with probability 1 − α . If continuing, she randomly moves to i’s neighbor j with
probability Pi j , where P is the transition matrix of the graph. The stationary distribution of such a
process defines the RWR scores from u to all the keywords inV , and the score from u to keyword
v , denoted as ru→v , is the probability that the surfer resides on v . Given two tweets d and d ′, we
start RWR from the keywords of d ′ and define the semantic proximity of d ′ to d as the average
probability that the random walk resides on d . Formally, let Ed = {e1, e2, . . . , em } be the keyword
set of d , and Ed ′ = {e ′1, e ′2, . . . , e ′n } the keyword set of d ′; then the semantic proximity from d ′ to d
is

S (d ′ → d) =
1

mn

∑
e ∈Ed

∑
e ′ ∈Ed′

re ′→e . (2)

3.1.3 Geo-Topical Authority. Based on the geographical and semantic proximities, we measure
the geo-topical authority of a tweet as follows.

Definition 3.2 (Neighbor). Given a tweet d , we say d ′ is a neighbor of d if d ′ satisfies G (d ′ →
d) > 0 and S (d ′ → d) > δ , where 0 < δ < 1 is a prespecified threshold.

Definition 3.3 (Authority). Given a tweet d ∈ DQ , let N (d) be the set of d’s neighbors in DQ . The
authority of d is A(d) =

∑
d ′ ∈N (d)

G (d ′ → d) · S (d ′ → d).

Given a tweet d , d ′ is a neighbor of d if it resembles d both geographically and semantically. The
set of all neighbors inDQ forms d’s neighborhood and contributes to d’s authority. We could inter-
pret Definition 3.3 as follows: an amount of G (d ′ → d) energy is distributed from d ′ to d through
random walk on the graph, G (d ′ → d) · S (d ′ → d) is the amount that successfully reaches d , and

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

GeoBurst+: Effective and Real-Time Local Event Detection in Geo-Tagged Tweet Streams 34:7

Fig. 3. An illustration of the authority ascent process.

d’s authority is the total amount of energy that d receives from its neighbors [38]. The authority
score is analogous to kernel density in the task of nonparametric kernel density estimation [7]. In
kernel density estimation, the density of any point x in the Euclidean space is contributed mainly
by the observed points that are close enough to x . As such, the density maxima can be defined in
a nonparametric manner. Analogously, in our problem, the geo-topic authority of any tweet d is
contributed by the observed tweets that are similar to d both geographically and semantically. As
a result, the salient tweets for different activities can be selected in the geo-topical space.

3.1.4 Pivot. With Definition 3.3, we define a pivot as an authority maximum.

Definition 3.4 (Pivot). Given a tweet d ∈ DQ and its neighborhood N (d), d is a pivot if A(d) =
max

d ′ ∈N (d)
A(d ′).

Consider a local event that occurs at location l . If d is a tweet discussing that event at l , then
d is likely to be surrounded by relevant tweets to become the pivot for that event. The notion of
neighborhood plays an important role in Definition 3.4: it ensures the supporting tweets are both
geographically close and semantically relevant. This property leads to different pivots that can
distinguish different-semantics events happening at the same location, as well as same-semantics
events happening at different locations.

3.2 Authority Ascent for Detecting Geo-Topical Clusters

Now our task is to find all pivots in DQ and assign each tweet to its corresponding pivot. We
develop an authority ascent procedure for this purpose. As shown in Figure 3, starting from a
tweet d1 as the initial center, we perform step-by-step center shifting. Assuming the center at step
t is tweetdt , we finddt ’s neighborhoodN (dt) and the local pivot l (dt)—the tweet having the largest
authority in N (dt). Then we regard l (dt) as our new center, i.e., dt+1 = l (dt). As we continue such
an authority ascent process, the center is guaranteed to converge to an authority maximum. It is
because every shift operation increases the authority of the current center, and the authority is
upper bounded (there are only a finite number of tweets in DQ).
Algorithm 1 depicts the process of finding the pivot for every tweet in DQ . As shown, we first

compute the neighborhood for each tweet d ∈ DQ (lines 1–2). Subsequently, we compute the au-
thority of each tweet (lines 3–4) and obtain its local pivot (lines 5–6). So long as the local pivots
are obtained, we perform authority ascent to identify the pivot each tweet belongs to. Finally, the
tweets having the same pivot are grouped into one geo-topical cluster and returned as a candidate
event.
The geographical kernel bandwidth, the geographical threshold, and the semantic threshold play

an important role in constraining the neighbor set and guaranteeing the coherence of the final geo-
topical clusters. Specifically, (1) with Equation (1) and the geographical threshold set to 0, only the
tweets that are close enough to d can fall in d’s neighborhood, thus ensuring the geographical

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

34:8 C. Zhang et al.

ALGORITHM 1: Pivot Seeking

Input: The tweet set DQ , the kernel bandwidth h, the semantic threshold δ .
Output: The pivot for each tweet in DQ .

// Neighborhood computation.

1 foreach d ∈ DQ do

2 N (d) ← {d ′|d ′ ∈ DQ ,G (d ′ → d) > 0, S (d ′ → d) > δ };
// Authority computation.

3 foreach d ∈ DQ do

4 A(d) ← d’s authority score computed from N (d);

// Find local pivot for each tweet.

5 foreach d ∈ DQ do

6 l (d) ← arg max
d ′ ∈N (d)

A(d ′);

// Authority ascent.

7 foreach d ∈ DQ do

8 Perform authority ascent to find the pivot for d ;

compactness of the result clusters, and (2) with the semantic threshold δ , only the tweets that are
semantically similar enough can fall in d’s neighborhood, thus ensuring the semantic coherence
of the result clusters.
In Algorithm 1, while it is easy to compute geographical proximity based on tweet location, the

challenge is how to compute semantic proximity efficiently. A naïve idea is to obtain the RWR score
between any two keywords, but such an idea is not efficient as the keyword co-occurrence graph
can be large. To address this challenge, we leverage the locality of RWR: given a keyword q, we
observe that only a limited number of keywords falling inq’s vicinity have large values, while most
keywords have extremely small RWR scores. We thus introduce the concept of keyword vicinity,
which keeps only large enough RWR scores by exploring a small neighborhood around q. Below,
we demonstrate how to fast compute the keyword vicinity based on the Decomposition Theorem

[16].

Theorem 3.5. For a keyword u, let Ou be the set of u’s out-neighbors inG. Given a keyword q, the
RWR from u to q satisfies

ru→q =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

(1 − α) ∑
v ∈Ou

Puvrv→q if u � q

(1 − α) ∑
v ∈Ou

Puvrv→q + α if u = q.
(3)

Theorem 3.5 says that the RWR fromu toq can be derived by linearly combining the RWR scores
ofu’s out-neighbors, with extra emphasis onq itself.With this theorem,we use a local computation
algorithm [23] to obtain q’s vicinity. Starting from an initial vicinity, we gradually expand the
vicinity and propagate RWR scores among the keywords falling inside. The RWR approximation
becomes tighter and tighter as the vicinity expansion continues, and terminates when an error
bound ϵ (0 < ϵ
 δ) is guaranteed. Algorithm 2 depicts the detailed vicinity computation process.
To compute q’s vicinity, we maintain two quantities for any keywordu: (1) s (u) is the current RWR
score from u to q, and (2) p (u) is the score that needs to be propagated. We use a priority queue to
keep p (u) for all the keywords. Every time, we pop the keywordu that has the largest to-propagate
score and update the score and to-propagate score for each in-neighbor ofu. After that, we set p (u)
to zero to avoid redundant propagation. The algorithm terminates when the max element in the

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

GeoBurst+: Effective and Real-Time Local Event Detection in Geo-Tagged Tweet Streams 34:9

ALGORITHM 2: Approximate RWR Score Computation

Input: The keyword co-occurrence graph G, a keyword q, the restart probability α , an error bound ϵ .
Output: q’s vicinity Vq .

1 // p (u) is the score of node u that needs to be propagated.

2 s (q) ← α ,p (q) ← α ,Vq ← ϕ;

3 Q ← a priority queue that keeps p (u) for the keywords in G;

4 while Q.peek() ≥ αϵ do

5 u ← Q.pop();

6 for v ∈ I (u) do
7 Δs (v) = (1 − α)pvup (u);
8 s (v) ← s (v) + Δs (v);

9 Vq [v]← s (v);

10 Q.update(v , p (v) + Δs (v));

11 p (u) ← 0;

12 return Vq ;

priority queue is less than αϵ and returns all the keywords that have nonzero RWR scores as q’s
vicinity. Any keyword u not in q’s vicinity must satisfy ru→q < ϵ .

Theorem 3.6. Let r̂u→q be the approximate RWR score computed by Algorithm 2, and then r̂u→q

satisfies |ru→q − r̂u→q | ≤ ϵ . The time complexity of Algorithm 2 is O (Dq/α log 1/(ϵα)), where Dq =∑
u :su→q>αϵ (|I (u) | + log |V |).
Proof. See [23] for details. �

With Theorem 3.6, we further analyze the complexity of Algorithm 1 as follows. First, for each
keyword, we need to compute its vicinity using Algorithm 2. Assume the total number of keywords
isM , and then the complexity of this part isO (MDq/α log 1/(ϵα)), where Dq =

∑
u :su→q>αϵ

(|I (u) | +
log |V |). Second, based on the obtained keyword vicinities, we need to perform the pivot-seeking
process for every tweet in the query window. Assume the maximum number of tweets in the query
window is N , and then the time complexity of the pivot-seeking process is O (N 2). Therefore, the
overall complexity of the candidate generation step is O (MDq/α log 1/(ϵα) + N 2).

4 CANDIDATE EVENT CLASSIFICATION

Up to now, we have obtained a set of geo-topical clusters in the query window as candidate events.
Nevertheless, as aforementioned, not necessarily does every candidate correspond to a local event.
In this section, we describe the module for candidate event classification. The foundation of our
classification is the summarizationmodule, which learns word embedding to capture the semantics
of short tweet messages and meanwhile constructs the activity timeline to reveal routine regional
activities. In what follows, we describe embedding learning and activity timeline construction in
Sections 4.1 and 4.2, respectively, and then present the classifier in Section 4.3.

4.1 Learning Embeddings from the Stream

The embedding learner aims at capturing the semantics of short text by jointly mapping the tweet
messages and keywords into the same low-dimensional space. If two tweets (keywords) are se-
mantically similar, they are forced to have close embedding vectors in the latent space. The learner
continuously consumes a massive amount of tweets from the input stream and learns to preserve

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

34:10 C. Zhang et al.

their intrinsic semantics. As such, it can generate fixed-length vectors for any text pieces (e.g., the
candidate event and the background activity), which serve as high-quality features to discriminate
whether a candidate event is indeed a local event or not.
The objective of the embedding learner is to reconstruct the observed tweets as much

as possible. Specifically, given a tweet d and a set of keywords w1,w2, . . . ,wn that ap-
pear in d , we model the probability of observing the keyword wi (1 ≤ i ≤ n) as p (wi |d−i) =
exp(s (wi ,d−i))/

∑
w j ∈V exp(s (w j ,d−i)),whered−i is the set of all the units ind exceptwi , s (wi ,d−i)

is the similarity score betweenwi and d−i based on their embeddings, andV is the keyword vocab-
ulary. The key is how to define s (wi ,d−i). Inspired by the success of the Paragraph Vector model
[20] for capturing the semantics of sentences and documents, we assume both the keywords and
the tweet itself have latent representations in the common space. Such a joint embedding strategy
can lead to more discriminative representations for the tweet compared to learning keywords’ em-
beddings alone and computing the average as the tweet embedding. Hence, we define s (wi ,d−i) as

s (wi ,d−i) = vTi
vd +

∑
w j ∈d−i vj

|d−i | + 1 ,

where vi and vj are the latent embeddings for word wi and w j , respectively, and vd is the latent
embedding for the tweet d .
Ideally, the embeddings of the tweets and keywords should be learned to maximize the like-

lihood of observing all the tweets seen so far. Nevertheless, as the embedding learner runs in a
stream setting, it is infeasible to store all the seen tweets and iterate through them for multiple
epochs—as done in previous works. To tackle this issue, we maintain a fixed-size cache for storing
the incoming tweets. Once the cache is saturated, we randomly shuffle the stored tweets and use
them to update the embeddings of the keywords, and then empty the cache to accommodate future
tweets from the stream. More specifically, let C be the collection of tweets in the current cache;
we define the objective function as observing all the units in C , namely,

O = −
∑
d ∈C

∑
wi ∈d

logp (wi |d−i). (4)

To efficiently optimize the above objective, we use stochastic gradient descent (SGD) and nega-
tive sampling [25]. At each time, we use SGD to sample a tweetd and a wordwi ∈ d . With negative
sampling, we randomly selectK negative words that do not appear in d , and then the loss function
for the selected samples becomes

L = − logσ (s (wi ,d−i)) −
K∑
k=1

logσ (−s (wk ,d−i)),

where σ (·) is the sigmoid function. Letting hi = (vd +
∑
w j ∈d−i vj)/(|d−i | + 1), then the updating

rules for vi , vk , and hi can be obtained based on the following derivatives:

∂L

∂vi
= −σ (−s (wi ,d−i))hi ;

∂L

∂vk
= σ (s (wi ,d−i))hi ;

∂L

∂hi
=

K∑
k=1

σ (s (wk ,d−i))vk − σ (−s (wi ,d−i))vi .

For any unit j in hi (can be the tweet d or any keyword w ∈ d−i), we have ∂L/∂vj = ∂L/∂hi ·
∂hi/∂vj , as hi is linear in j, and the item ∂hi/∂vj is straightforward to obtain.
Relying on the tweet caching strategy and the SGD optimization procedure, the embedding

learner continuously consumes the geo-tagged tweet stream and keeps updating the embeddings

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

GeoBurst+: Effective and Real-Time Local Event Detection in Geo-Tagged Tweet Streams 34:11

for different keywords and tweets. With the learned keyword embeddings, the embedding of any
ad hoc text piece can be easily derived with SGD. As we will illustrate shortly, such a property
enables us to quantify the spatiotemporal unusualness of each candidate event and extract highly
discriminative features to pinpoint true local events.

4.2 Activity Timeline Construction

The activity timeline aims at unveiling the typical activities in different regions during different
time periods. For this purpose, we design a structure called tweet cluster (TC) and extend the CluS-
tream algorithm [2]. Let S be a set of tweets that are geographically close; its TC maintains the
following statistics:
1) n = |S |: the number of tweets
2)ml =

∑
d ∈S ld : the sum vector of locations

3)ml 2 =
∑
d ∈S ld ◦ ld : the squared sum vector of locations

4)mt =
∑
d ∈S td : the sum of timestamps

5)mt 2 =
∑
d ∈S t2d : the squared sum of timestamps

6)me =
∑
d ∈S Ed : the sum dictionary of keywords

The TC essentially provides a concise where-when-what summary for S : (1) where: with n,ml ,
andml 2 , one can easily compute the location mean and variance for S ; (2) when: with n,mt , and
mt 2 , one can compute the mean time and temporal variance for S ; and (3) what: me keeps the
number of occurrences for each keyword.
These fields in a TC S enable us to estimate the number of keyword occurrences at any location.

First, the quantities n, ml , and ml 2 allow us to compute the center location of the TC S . Second,
theme tracks the number of occurrences for different keywords around the centered location of
S . With either spatial interpolation or kernel density estimation, one can estimate the occurrences
of keyword k at any ad hoc location based on the distance to the center location of S .
Moreover, TC satisfies the additive property; i.e., the fields can be easily incremented if a new

tweet is absorbed. Based on this property, we adapt CluStream to continuously cluster the stream
into a set of TCs. When a new tweet d arrives, it finds the TCm that is geographically closest to d .
If d is withinm’s boundary (computed from n,ml , andml 2 , see [2] for details), it absorbs d intom
and updates its fields; otherwise, it creates a new TC ford . Meanwhile, we employ two strategies to
limit the maximum number of TCs: (1) deleting the TCs that are too old and contain few tweets and
(2) merging the closest TC pairs until the number of remaining TCs is small enough. We cluster
the continuous stream and store the clustering snapshots at different timestamps. Since storing
the snapshot of every timestamp is unrealistic, we use the pyramid time frame (PTF) structure [2]
to achieve both good space efficiency and high coverage of the stream history.

4.3 The Classifier

The learned embeddings and the activity timeline serve as useful background knowledge for clas-
sifying candidate events. Based on them, we extract the following set of discriminative features to
characterize each candidate event:
Temporal Unusualness. The temporal unusualness measures how unusual a candidate C is at
its pivot location lC . To quantify C’s temporal unusualness, our idea is to leverage the embedding
learner to obtain low-dimensional vectors for both the candidateC and the background activity at
lC to compare them.

We compute the temporal unusualness measure as follows:

(1) For the candidate C , we form a pseudo tweet of C by selecting the top K keywords based
on TF-IDF weights. Once the pseudo tweet is obtained, we process it with the learned
keyword embeddings to derive its textual embedding, denoted as vC .

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

34:12 C. Zhang et al.

Fig. 4. Retrieving historical activities from activity timeline.

(2) To obtain the embedding for the background activity, we examine the most recent snap-
shot from the activity timeline and retrieve the closest cluster with lC . Such a cluster,
denoted as Tl , encodes the typical activities around location lC . Based on the statistics
stored in Tl , we again form a pseudo tweet for Tl by selecting the top K keywords, and
then use keyword embeddings to obtain the embedding of Tl , denoted as vT .

(3) After computing the two vectors vC and vT , we compute temporal unusualness as the
cosine distance between them, namely,

fT (C) = cos(vC , vT).

Spatial Unusualness. The spatial unusualness captures how spatially unique the candidate C is
compared to other candidate events in the query window.
We compute the spatial unusualness measure as follows:

(1) For the candidate C , we still form a pseudo tweet of C by selecting the top K keywords
based on TF-IDF weights, and derive its embedding vC .

(2) Given the tweet corpora DQ in the query window, we select the top K keywords from DQ

based on TF-IDF weights, and derive its embedding vQ .
(3) We compute spatial unusualness as the cosine distance between the two vectors

fT (C) = cos(vC , vQ).

Temporal Burstiness. To measure how temporally bursty a candidate eventC is, we quantify the
temporal burstiness of each keyword in C , and then aggregate the burstiness of all the keywords.
As shown in Figure 4, we retrieve the snapshots in a reference time window R that right precedes
the query window Q . Each pair of consecutive snapshots in R corresponds to a historical activity,
defined as follows.

Definition 4.1 (Historical activity). Let s1 and s2 be two snapshots at timestamp ts1 and ts2 (ts1 <
ts2). The historical activity during the time interval [ts1 , ts2] is the set of TCs obtained by subtracting
s1 from s2.

Let us use an example in Figure 4 to illustrate howwe acquire historical activities in the reference
window R. As shown, the snapshots s1, s2, s3, s4 fall in R. For each pair of consecutive snapshots,
i.e., [s1, s2], [s2, s3], [s3, s4], we perform snapshot subtraction to obtain the historical activity during
the respective time interval. For instance, for the snapshot pair [s1, s2], we subtract s1 from s2 and
obtain the historical activity, represented as a set of TCs: {m1,m2,m4,m6,m7,m8}. Note that the
subtraction of two snapshots can be easily done by matching TC IDs and subtracting the fields.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

GeoBurst+: Effective and Real-Time Local Event Detection in Geo-Tagged Tweet Streams 34:13

With each historical activity, we can use kernel density estimation to infer k’s occurrences at
location lC . As R contains multiple historical activities, and each can generate an estimation
of keyword k’s occurrences at location lC , we obtain a set of estimations, denoted as Ωt =

{N̂1 (k), N̂2 (k), . . . , N̂c (k)}. Then we use the z-score to quantify k’s temporal burstiness:

zt (k) = (N (k) − μΩt
)/σΩt

,

where N (k) is k’s actual number of occurrences in C , and μΩt
and σΩt

are the mean and standard
deviation of Ωt , respectively.
Spatial Burstiness. To measure spatial burstiness, we horizontally compare all the candidates
in Q . The rationale is that, among the spatially scattered candidates, a keyword k in candidate C
is spatially bursty if k’s proportion in C is significantly higher than in other candidates. Given n
candidate eventsC1,C2, . . . ,Cn , let Pi denote the keyword probability distribution of candidateCi .
With Ωs = {P1 (k), P2 (k), . . . , Pn (k)}, we compute the spatial burstiness of keyword k in candidate
Ci as

zs (k) = (Pi (k) − μΩs)/σΩs ,

where μΩs and σΩs are the mean and standard deviation of Ωs . The underlying assumption of com-
puting the z-score as the spatial burstiness (as well as the temporal burstiness) is that the fraction
of any keyword across different regions (days) follows a normal distribution. Such an assumption
is reasonable given the regularity and periodicity underlying people’s everyday activities. Under
such an assumption, a large z-score typically reflects a certain unusual burst of the keyword, and
could be good indicators for local events.
Static Features. For each candidate C , we also extract the following static features:

(1) |C |: the total number of tweets in C
(2) STDt |C |: the standard deviation of the timestamps of the tweets in C
(3) STDlat |C |: the standard deviation of the latitudes of the tweets in C
(4) STDlnд |C |: the standard deviation of the longitudes of the tweets in C

The Classification Procedure. With the above features, we use logistic regression to train a
binary classifier and judge whether each candidate is indeed a local event. We choose logistic
regression because of its robustness when there is only a limited amount of training data. While
we have also tried using other classifiers like Random Forest and SVM, we find that the logistic
regression classifier produces the best result in our experiments. The labeled instances for the
classifier are collected through a large-scale experiment on a popular crowdsourcing platform. We
will shortly detail the annotation process in Section 6.
We analyze the complexity of the candidate classification step as follows. As the prediction

time of logistic regression is linear in the number of features and has O (1) complexity, the time
cost is dominated by the feature extraction process. Let NC be the maximum number of tweets
in each candidate, M be the keyword vocabulary size, D be the latent embedding dimension, and
NQ be the number of tweets in the query window. We need to extract the features for all the
candidates in the query window. The time costs for extracting different features for each candidate
event are analyzed as follows: (1) for the temporal unusualness measure, its time complexity is
O (M + NA + D),whereNA is themaximumnumber of TCs in one snapshot of the activity timeline;
(2) for the spatial unusualness measure, its time complexity isO (M + NQ + D); (3) for the temporal
burstiness measure, its time complexity isO (MNA); (4) for the spatial burstiness measure, its time
complexity is O (MNC); and (5) for the static features, the total time complexity is O (NC).

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

34:14 C. Zhang et al.

Fig. 5. Updating the keyword co-occurrence graph and keyword vicinities.

5 THE ONLINE UPDATER

In this section, we present the online updater of GeoBurst+. Consider a query windowQ , and let
Q ′ be the new query window after Q shifts. Instead of finding the local events in Q ′ from scratch,
the online updater leverages the results in Q and updates the event list with little cost.
If one runs the batch detection algorithm in the updated window Q ′, the candidate generation

step will dominate the total time cost in the two-step detection process, while the candidate clas-
sification step is very efficient. Hence, our focus for supporting efficient online detection is to
develop algorithms that can fast update the geo-topical clustering results when the query window
shifts from Q to Q ′.

To guarantee generating the correct clustering results inQ ′, the key is to find the new pivots in
the new window Q ′ based on the previous results in Q . Let DQ be the tweets falling in Q and D ′Q
be the tweets in Q ′. We denote by RQ the tweets removed from DQ , i.e., RQ = DQ − D ′Q , and by

IQ the tweets inserted into DQ , i.e., IQ = D ′Q − DQ . In the sequel, we design a strategy that finds

pivots inD ′Q by just processing RQ and IQ . Recall that the pivot-seeking process first computes the

local pivot for each tweet and then performs authority ascent via a path of local pivots. So long
as the local pivot information is correctly maintained for each tweet, the authority ascent can be
fast completed. The major idea for avoiding finding pivots from scratch is that, as DQ is changed
to D ′Q , only a number of tweets have their local pivots changed. We call them mutated tweets,

defined as follows.

Definition 5.1 (Mutated Tweet). A tweet d ∈ D ′Q is a mutated tweet if d’s local pivot in D ′Q is

different from its local pivot in DQ .

Now the questions is, how do we fast identify the mutated tweets by analyzing the influence
of RQ and IQ? Our observation is that, for any tweet, it can become a mutated tweet only if at
least one of its neighbors has authority change. Therefore, we take a reverse search strategy to find
mutated tweets: (1) first, we identify in D ′Q all the tweets whose authorities have changed, and (2)

second, for each authority-changed tweet t , we retrieve the tweets that regard t as a neighbor, and
update their local pivots. Hence, the remaining issue is just to find the authority-changed tweets.
In what follows, we handle RQ and IQ to this end.
Handling Deletions. The deletion of a tweet d ∈ RQ can cause authority change in two ways.
First, for the tweets having d as a neighbor in DQ , their authorities decrease. Second, the key-
word co-occurrence graph may evolve because of deleting d . As a result, the vicinities of certain
keywords need to be recomputed and the authorities of corresponding tweets may change. The
first case can be easily handled due to the additive property of authority. When d is deleted, we
simply retrieve the tweets having d as a neighbor in DQ . For each of those tweets, we subtract d’s
contribution from the authority score. For the second case, the key is to identify the keywords that
need vicinity recomputation. Let us look at an example in Figure 5. If d contains two keywords e1
and e2, deleting d would decrease the weight of the edge [e1, e2]. For any other keywords having
e1 or e2 in their old vicinities (e3 and e4 in this example), we mark them as to-recompute keywords.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

GeoBurst+: Effective and Real-Time Local Event Detection in Geo-Tagged Tweet Streams 34:15

However, we defer the computation of their vicinities until IQ is handled to identify the complete
set of to-recompute keywords.
Handling Insertions. A new tweet d ∈ IQ can also cause authority changes in two ways: (1)

increasing the authority of the tweets that regard d as a neighbor and (2) making the keyword
co-occurrence graph evolve. Here, we need to first deal with the second case to ensure authority
computation in the first case is based on the updated keyword vicinities. Similarly, we identify the
keywords whose attaching edges have weight change, and mark other keywords that include such
keywords in their vicinities. After all the to-recompute keywords are identified, we call Algorithm 2
to obtain their new vicinities. Once the keyword vicinities are updated, we retrieve the affected
tweet pairs and update the corresponding authority scores. For the second case, now that the
keyword vicinities have already been updated, for the inserted tweet d , we simply find which
other tweets have d as their neighbor, and then add d’s contribution to their authorities.

6 EXPERIMENTS

6.1 Experimental Settings

Compared Methods. We compare GeoBurst+ with the following methods:

• EvenTweet [1] extracts bursty and localized keywords as features and then clusters those
features based on spatial distributions.

• Wavelet [6] uses wavelet transform to identify spatiotemporally bursty keywords and then
clusters them by considering both co-occurrence and spatiotemporal distribution.

• GeoBurst [41] is a preliminary version of GeoBurst+. It neither uses embedding to capture
textual semantics nor has the classificationmodule for accurate event identification. Instead,
it heuristically ranks all the candidates by theweighted combination of the spatial burstiness
and temporal burstiness.

• GeoBurst* is an adapted version of GeoBurst+, which does not use the features gener-
ated by the embedding learner (i.e., the temporal unusualness and spatial unusualness) for
candidate event classification.

Datasets and Ground Truth. Our experiments are based on two real-life datasets, both of which
are crawled using Twitter Streaming API from August 1, 2014 to November 30, 2014. The first
dataset, referred to as NY, consists of 6.41 million geo-tagged tweets in New York (after removing
the tweets that do not have any verbs or nouns). The second dataset, referred to as LA, consists of
5.53 million geo-tagged tweets in Los Angeles.
To evaluate the performance of different local event detection methods, we randomly generate

160 query time windows that are nonoverlapping. We generated those queries with four different
lengths: 3-hour, 4-hour, 5-hour, and 6-hour; there are thus 40 queries for each query length. As all
the methods require a reference window, we use a 1-week reference window right preceding each
query.
Now we describe the process for collecting ground-truth local events on NY and LA using a

crowdsourcing platform. For every query, we run the methods to retrieve local events on the two
datasets and upload the results to CrowdFlower,1 a popular crowdsourcing platform, for evalu-
ation. For GeoBurst+ and its variants, we ran both the batch mode and online mode to detect
local events in the query window and found that these two modes produce exactly the same re-
sults. Thus, we only upload the results produced by the online mode and report its effectiveness.
On CrowdFlower, we represent each event with the five most representative tweets as well as 10

1http://www.crowdflower.com/.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

http://www.crowdflower.com/

34:16 C. Zhang et al.

representative keywords, and ask three CrowdFlower workers to judge whether the event is in-
deed a local event or not. To ensure the quality of the workers, we label 20 queries for ground-truth
judgments on each dataset, such that only the workers who can achieve no less than 80% accu-
racy on the ground truth can submit their answers. Finally, we use majority voting to aggregate
the workers’ answers. The representative tweets and keywords are selected as follows: (1) For
GeoBurst+ and its variants, each event is a cluster of tweets; we select the five tweets having the
largest authority scores and the 10 keywords having the largest TF-IDF weights. (2) EvenTweet
represents each event as a group of keywords. We select the top 10 keywords in each event. Then
we regard the group of keywords as a query to retrieve the top five most similar tweets using the
BM25 retrieval model. (3) Wavelet represents an event with both keywords and matching tweets.
We simply select the top five tweets and the top 10 keywords.
As bothGeoBurst+ andGeoBurst* are supervisedmethods, we need to obtain training data for

the candidate classifiers. The process for collecting the ground-truth events is described as follows:
after gathering judgments from CrowdFlower, we rank the 160 query windows in chronological
order. We train the candidate event classifiers for GeoBurst+ and GeoBurst* using the labeled
candidates from the first 80 queries, and use the labeled data from the remaining 80 queries for
evaluating all the methods.
Parameters. There are three major parameters in GeoBurst+: (1) the kernel bandwidth h, (2) the
restart probabilityα , and (3) the RWR similarity threshold δ . We seth = 0.01,α = 0.2, and δ = 0.02.
We have tuned these parameters and finally set them to these values for the following reasons: (1)
α specifies the restart probability during the random walk with restart process. To ensure good
performance of the RWR measure, it is common to set it to the range [0.1, 0.3]. After tuning it
on our data, we find that α = 0.2 produces quality geo-topical clusters. (2) h controls the spatial
granularity of the geo-topical clustering process. With h = 0.01, we find that the geo-topic clusters
are geographically compact enough. (3) δ controls the semantic coherence of the result clusters.
We observe that setting δ into the range [0.01, 0.025] produces clusters that are of high quality. A
too-large δ imposes a too-strong constraint that could split relevant tweets into different clusters,
while a too-small δ could make the clusters too coarse-grained such that the tweets about different
activities are grouped into the same cluster.
EvenTweet partitions the whole space into N × N small grids. We find that N is EvenTweet’s

most sensitive parameter, and setN = 50 after tuning. ForWavelet, the most sensitive parameters
are the granularities for constructing the spatiotemporal signal. After tuning, we set the space par-
titioning granularity to δx = 0.1,δy = 0.1, and the time granularity to δt = 3 hours. For GeoBurst,
it shares the three parameters with GeoBurst+, but has one more parameter η balancing the spa-
tial and temporal burstiness in the ranking module. By default, we set η = 0.5.

6.2 Effectiveness Study

6.2.1 Quantitative Comparison. As aforementioned, after generating the 160 queries, we use
the labeled data in the last 80 query windows for evaluation. To quantify the performance of all
the methods, we report the following metrics:

(1) The detection precision is computed as P = Ntrue/Nreport, where Ntrue is the number of
true local events in the result list and Nreport is the number of reported events.

(2) While the precision is easy to compute, the detection recall is hard to obtain due to the
lack of the comprehensive set of local events in a given query window. We thus propose
to measure the pseudo recall for each method. Specifically, for each query window, we
aggregate all the true local events detected by different methods. Let Ntotal be the total

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

GeoBurst+: Effective and Real-Time Local Event Detection in Geo-Tagged Tweet Streams 34:17

Fig. 6. Comparing the detection precision, recall, and F1 score of different methods on NY and LA.

number of the distinct local events detected by all the methods; we compute the pseudo
recall of each method as R = Ntrue/Ntotal.

(3) Finally, we also report the F1 score of each method, which is simply computed as F1 =
2 ∗ P ∗ R/(P + R).

Figure 6 shows the precisions, recalls, and F1 scores of all themethods onNY and LA. Comparing
the five methods, we find that GeoBurst+ significantly outperforms the baseline methods on both
datasets. The huge improvements indicate the superiority of GeoBurst+’s two-step scheme: (1)
the candidate generation step ensures a good coverage of all potential local events, and (2) the
classification step effectively pinpoints the true local events based on the features that capture the
burstiness and unusualness of each candidate event.
Comparing the performance of GeoBurst+ and its variants, we find that GeoBurst+ outper-

forms GeoBurst by as much as 42.3% percent. Such a performance gap demonstrates that the
features (i.e., temporal unusualness and spatial unusualness) extracted from the embedding mod-
ule indeed capture the characteristics of local events. Meanwhile, the classification procedure ef-
fectively leverages the extracted features to pinpoint true local events from the candidate set.
GeoBurst* has better performance than GeoBurst, but is outperformed by GeoBurst+ consider-
ably. This phenomenon further suggests that the two features generated by the embedding module
play an important role in the classification process. Overall, Wavelet and EvenTweet perform
much poorer than GeoBurst+ and its variants. ForWavelet, it is more suitable for detecting local
events in a long time span. When the query windows are short, Wavelet fails to extract the less
bursty but still interesting keywords. For EvenTweet, it deals with the text part by simply con-
sidering each keyword as an independent item, and thus fails to capture the intrinsic correlations
among the keywords.

6.2.2 Case Studies. In this subsection, we illustrate the example local events detected by
GeoBurst+ on NY and LA. For each event, we plot the locations of the member tweets and select
the top five tweets that have the largest authority scores. Figures 7(a) and 7(b) show two local
events detected on NY: (1) the football game between the Giants and the Patriots and (2) the Elec-
tric Zoo Festival. Examining the detected local events, one can see that the generated geo-topical
clusters are of high quality: the tweets in each cluster are both geographically compact and se-
mantically coherent. Interestingly, GeoBurst+ can group the tweets that discuss the topic using

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

34:18 C. Zhang et al.

Fig. 7. Example local events detected by GeoBurst+ on the NY and LA datasets. For each event, we plot the

locations of the member tweets and show the top five tweets that have the largest authority scores.

different keywords (e.g., “Pats” and “Patriots”). This is because the RWR measure effectively cap-
tures the subtle semantic correlations between keywords. Another observation is that the pivot
tweets of each cluster are highly interpretable. This is because such high-quality tweets mention
the most important keywords about the topic and locate closely to the occurring spot, thereby
receiving high authority scores.
Figures 7(c) and 7(d) show two local events detected on the LA dataset. The first is an earthquake

that occurred in the San Pedro area, and the second is a protesting rally held at Leimert Park
to fight for Mike Brown. Again, we can see the representative tweets are highly interpretable.
Meanwhile, the locations of the earthquake event are more scattered, while the locations of the
protest event are very concentrated around the Leimert Park area. Such a phenomenon is explained
by the fact that the earthquake influences a much larger geographical scope than the protest event,
and GeoBurst+ can robustly detect the local events that have different scopes.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

GeoBurst+: Effective and Real-Time Local Event Detection in Geo-Tagged Tweet Streams 34:19

Fig. 8. Running time versus # tweets in the query window.

6.3 Efficiency Study

6.3.1 Running Time Comparison. We first compare the running time of different methods, by
generating 500 random queries with different lengths and reporting the running time of each
method. As the running time of GeoBurst+ and GeoBurst* are almost the same, we omit the
results for GeoBurst*. We run GeoBurst+ in both batch mode and online mode. Given a query
windowQ , the batch mode performs candidate generation and classification inQ ; the online mode
considers a windowQ ′ that precedesQ by 10 minutes and finds local events inQ by updating the
results in Q ′.

Figure 8 shows the running time of all the methods on NY and LA. We observe that GeoBurst+
is much more efficient than EvenTweet and Wavelet even when in the batch mode. This phe-
nomenon is explained by two facts. First, in the candidate generation step, the approximate RWR
computation strategy can effectively speed up the pivot-seeking process. Second, in the classifica-
tion step, GeoBurst+ just uses a number of historical activities to extract the feature set, which is
very efficient. Meanwhile, the online mode is much faster than the batch mode. This is expected
as the online mode does not need to find pivots from scratch in the time-consuming candidate
generation step, but just needs to process the updated tweets and can achieve excellent efficiency.
The batch mode of GeoBurst is a bit more efficient than GeoBurst+, because GeoBurst+ needs
to extract embedding-based features in addition to the spatial and temporal burstiness and thus
incurs extra overhead. Nevertheless, the marginal efficiency overhead of GeoBurst+ brings about
large improvements in detection effectiveness and is thus cost-effective.
The major overhead of EvenTweet and Wavelet is due to their space partitioning strategy.

Specifically, EvenTweet needs to compute spatial entropy to select localized keywords and per-
form clustering based on keyword spatial distributions; Wavelet needs to perform wavelet trans-
form on the spatiotemporal signal and compute the spatiotemporal KL-divergence between key-
words. One may propose to partition the space at a coarser granularity to improve the running
time of the two methods, but that comes at the price of being much less effective.

6.3.2 Throughput Study. In Figure 9, we report the scalability of GeoBurst+’s online mode in
terms of the number of updates: Nupdate = Ndelete + Ninserte. To this end, we choose a 3-hour query
window Q . Then we use a window Q ′ that precedes Q by 1, 2, . . . , 10 minutes, respectively, and
update the results in Q ′. One can observe that the running time of the online mode shows good
scalability with the number of updates. For example, when there are as many as 212 updates, the
online mode takes just 0.337 second to finish on the NY dataset. Such performance suggests that
GeoBurst+ is capable of continuously monitoring the stream and realizing real-time detection.
To study the throughput of GeoBurst+’s summarization module, we apply it to process the

continuous streams of NY and LA and periodically record the number of tweets processed so far

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

34:20 C. Zhang et al.

Fig. 9. Throughput of GeoBurst+’s online

mode.

Fig. 10. Time cost of stream summarization

(NY).

and the time for summarization. As the summarization consists of embedding learning and activity
timeline construction, we report the time cost for each of them w.r.t the number of processed
tweets. With the NY dataset, Figures 10(a) and 10(b) show the scalability for embedding learning
and activity timeline construction, respectively. One can observe that, for the 3-month tweets in
New York, GeoBurst+ learned the embeddings in 330.82 seconds and constructed the activity
timeline in 831.85 seconds, and both operations scale well with the number of tweets. The results
and trends are similar on LA, and we omit them to save space.

7 RELATEDWORK

7.1 Global Event Detection

Global event detection aims at extracting events that are bursty and unusual in the entire tweet
stream. Existing approaches to this end can be classified into two categories: document based and
feature based. Document-based approaches consider each document as a basic unit and group sim-
ilar documents to form events. Allan et al. [4] perform single-pass clustering of the stream and
use a similarity threshold to determine whether a new document should form a new topic or be
merged into an existing one. Aggarwal et al. [3] also detect events by continuously clustering the
tweet stream, but their similarity measure considers both tweet content relevance and user prox-
imity. Sankaranarayanan et al. [30] train a Naïve Bayes filter to identify news-related tweets and
cluster them based on TF-IDF similarity. They also enrich each piece of news with location infor-
mation by extracting geo-entities. Feature-based approaches [11], [14], [24], [33], [21] identify a
set of bursty features (e.g., keywords) from the stream and cluster them into events. Fung et al. [11]
model feature occurrences with binomial distribution to extract bursty features. He et al. [14] con-
struct the time series for each feature and perform Fourier Transform to identify bursts.Weng et al.
[33] use wavelet transform and auto-correlation to measure word energy and extract high-energy
words. Li et al. [21] segment each tweet into meaningful phrases and extract bursty phrases based
on frequency, which are clustered into candidate events and further filtered using Wikipedia. The
above methods are all designed for detecting global events that are bursty in the entire stream. As
aforementioned, a local event is usually bursty in a small geographical region instead of the entire
stream. Hence, directly applying these methods to the geo-tagged tweet stream would miss many
local events. There has also been work [29], [27], [22] on detecting specific types of events. Sakaki
et al. [29] investigate real-time earthquake detection. A classifier is trained to judge whether an
incoming tweet is related to an earthquake or not, and an alarm is released when the number of
earthquake-related tweets is large. Li et al. [22] detect crime and disaster events (CDEs) with a
self-adaptive crawler that dynamically retrieves CDE-related tweets. Different from those studies,
we aim to detect all kinds of local events from the stream.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

GeoBurst+: Effective and Real-Time Local Event Detection in Geo-Tagged Tweet Streams 34:21

7.2 Local Topic and Event Detection

There have been quite a few studies that model the topics/activities in different regions with geo-
tagged social media. Specifically, Sizov et al. [31] extend LDA [5] by assuming each latent topic
has a multinomial distribution over text, and two Gaussians over latitudes and longitudes. They
later extend the model to find topics that have complex and non-Gaussian distributions [18]. Yin
et al. [34] extend PLSA by assuming each region has a normal distribution that generates locations,
as well as a multinomial distribution over the latent topics that generate text. Guo et al. [13] use
Dirichlet Process to extract activities that freely span several regions and peaks multiple times.
Zhang et al. [39] propose a cross-modal embedding framework for uncovering the typical activities
in different geographical regions and time periods. While the above models are designed to detect
macro-level geographical topics, Hong et al. [15] and Yuan et al. [35] introduce the user factor
in the modeling process such that micro-level user preferences can be inferred. There is a clear
difference between geographical topic modeling and local event detection. The former attempts to
summarize the typical activities in different regions, whereas the latter aims at extracting unusual
activities bursted in local areas.
Watanabe et al. [32] and Quezada et al. [28] study location-aware events in social media, but

their major focus is on geo-locating tweets/events, whereas we aim to automatically extract local
events from raw geo-tagged tweets. Chen et al. [6] extract events from geo-tagged Flickr photos.
By converting the spatiotemporal distribution of each tag into a 3-dimensional signal, they perform
wavelet transform to extract spatiotemporally bursty tags and cluster those tags into events based
on co-occurrence as well as spatiotemporal distributions. Such a method, however, can only detect
local events in batch manner. Krumm et al. [19] propose the detection of spatiotemporal spikes in
the tweet stream as local events. Nevertheless, their approach can only detect events for predefined
rigid time windows (e.g., 3–6 p.m., 6–9 p.m.), because it discretizes time and compares the number
of tweets in the same bin across different days. It supports neither ad hoc query windows nor real-
time detection. Abdelhaq et al. [1] propose EvenTweet, which first extracts bursty and localized
keywords and then clusters such keywords based on their spatial distributions. Unfortunately,
EvenTweet suffers from two drawbacks. First, the clustering of localized keywords is merely
based on spatial distribution without considering tweet content. It results in irrelevant keywords
in the same cluster and cannot distinguish different events that occur at the same location. Second,
although EvenTweet is an online method, it is incapable of detecting local events in real time,
as the detection is triggered only when the current window is saturated. A preliminary version
of GeoBurst+ is introduced in [41]. However, the GeoBurst method proposed in [41] does not
leverage embedding learning to capture short-text semantics and is meanwhile unsupervised. The
embedding learner, the classification procedure, and the more systematic evaluations are all new
in this article.

7.3 Local Event Forecasting

Local event forecasting is another line of research that is related to our problem. Foley et al. [10]
use distant supervision to extract future local events from web pages, but the proposed method
can only extract local events that are well advertised in advance on the web. Muthiah et al. [26]
and Zhao et al. [43], [44], [42] have developed a bunch of methods and the EMBERS system for
forecasting local events. They formulate local event forecasting as a binary prediction problem,
i.e., predicting whether a specific type of event (e.g., civil unrest) will occur on a given day. Their
methods combine social media with other data sources (e.g., gold standard report, news articles) to
train reliable predictors. Our problem is orthogonal to their studies in that, instead of performing

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

34:22 C. Zhang et al.

binary prediction for a specific event type, we attempt to extract all types of local events from the
geo-tagged tweet data alone.

8 CONCLUSION

We studied the problem of real-time local event detection in geo-tagged tweet streams. We pro-
posed the GeoBurst+ detector. To the best of our knowledge, GeoBurst+ is the first method
that is capable of extracting highly interpretable local events in real time. GeoBurst+ first gener-
ates candidate events based on a novel pivot-seeking process, and then leverages the continuous
summarization of the stream as background knowledge to classify the candidates. Our extensive
experiments have demonstrated that GeoBurst+ is highly effective and efficient. The usage of
GeoBurst+ is not limited to Twitter. Rather, any geo-textual social media stream (e.g., Instagram
photo tags, Facebook posts) can use GeoBurst+ to extract interesting local events as well.

9 ACKNOWLEDGEMENTS

This work was sponsored in part by the US Army Research Laboratory under Cooperative Agree-
ment No. W911NF-09-2-0053 (NSCTA); National Science Foundation IIS-1017362, IIS-1320617, and
IIS-1354329; HDTRA1-10-1-0120, NSFC (Grant No. 61572488), and Grant 1U54GM114838 awarded
by NIGMS through funds provided by the trans-NIH Big Data to Knowledge (BD2K) initiative
(www.bd2k.nih.gov); and MIAS, a DHS-IDS Center for Multimodal Information Access and Syn-
thesis at UIUC. The views and conclusions contained in this document are those of the author(s)
and should not be interpreted as representing the official policies of the US Army Research Labora-
tory or the US government. The US government is authorized to reproduce and distribute reprints
for government purposes notwithstanding any copyright notation hereon.

REFERENCES

[1] Hamed Abdelhaq, Christian Sengstock, and Michael Gertz. 2013. Eventweet: Online localized event detection from

twitter. PVLDB 6, 12 (2013), 1326–1329.

[2] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. 2003. A framework for clustering evolving data

streams. In VLDB. 81–92.

[3] Charu C. Aggarwal and Karthik Subbian. 2012. Event detection in social streams. In SDM. 624–635.

[4] James Allan, Ron Papka, and Victor Lavrenko. 1998. On-line new event detection and tracking. In SIGIR. 37–45.

[5] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet allocation. Journal of Machine Learning

Research 3, 1 (2003), 993–1022.

[6] Ling Chen and Abhishek Roy. 2009. Event detection from flickr data through wavelet-based spatial analysis. In CIKM.

523–532.

[7] Dorin Comaniciu and Peter Meer. 1999. Mean shift analysis and applications. In ICCV. 1197–1203.

[8] Son Doan, Bao-Khanh Ho Vo, and Nigel Collier. 2012. An analysis of twitter messages in the 2011 tohoku earthquake.

In Electronic Healthcare. Springer, 58–66.

[9] Wei Feng, Chao Zhang,Wei Zhang, Jiawei Han, JianyongWang, Charu Aggarwal, and Jianbin Huang. 2015. STREAM-

CUBE: Hierarchical spatio-temporal hashtag clustering for event exploration over the Twitter stream. In ICDE. 1561–

1572.

[10] John Foley, Michael Bendersky, and Vanja Josifovski. 2015. Learning to extract local events from the web. In SIGIR.

423–432.

[11] Gabriel Pui Cheong Fung, Jeffrey Xu Yu, Philip S. Yu, and Hongjun Lu. 2005. Parameter free bursty events detection

in text streams. In VLDB. 181–192.

[12] Kevin Gimpel, Nathan Schneider, Brendan O’Connor, Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael Heilman,

Dani Yogatama, Jeffrey Flanigan, and Noah A. Smith. 2011. Part-of-speech tagging for twitter: Annotation, features,

and experiments. In ACL. 42–47.

[13] Jinjin Guo and Zhiguo Gong. 2016. A nonparametric model for event discovery in the geospatial-temporal space. In

CIKM. 499–508.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

www.bd2k.nih.gov

GeoBurst+: Effective and Real-Time Local Event Detection in Geo-Tagged Tweet Streams 34:23

[14] Qi He, Kuiyu Chang, and Ee-Peng Lim. 2007. Analyzing feature trajectories for event detection. In SIGIR. 207–214.

[15] Liangjie Hong, Amr Ahmed, Siva Gurumurthy, Alexander J. Smola, and Kostas Tsioutsiouliklis. 2012. Discovering

geographical topics in the twitter stream. InWWW. 769–778.

[16] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. InWWW. 271–279.

[17] Wei Kang, Anthony K. H. Tung, Wei Chen, Xinyu Li, Qiyue Song, Chao Zhang, Feng Zhao, and Xiajuan Zhou. 2014.

Trendspedia: An Internet observatory for analyzing and visualizing the evolving web. In ICDE. 1206–1209.

[18] Christoph Carl Kling, Jérôme Kunegis, Sergej Sizov, and Steffen Staab. 2014. Detecting non-Gaussian geographical

topics in tagged photo collections. InWSDM. 603–612.

[19] John Krumm and Eric Horvitz. 2015. Eyewitness: Identifying local events via space-time signals in twitter feeds. In

SIGSPATIAL.

[20] Quoc V. Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In ICML, vol. 14.

1188–1196.

[21] Chenliang Li, Aixin Sun, and Anwitaman Datta. 2012. Twevent: Segment-based event detection from tweets. In CIKM.

155–164.

[22] Rui Li, Kin Hou Lei, Ravi Khadiwala, and KC-C. Chang. 2012. Tedas: A twitter-based event detection and analysis

system. In ICDE. 1273–1276.

[23] Peter Lofgren and Ashish Goel. 2013. Personalized pagerank to a target node. arXiv:1304.4658 (2013).

[24] Michael Mathioudakis and Nick Koudas. 2010. Twittermonitor: Trend detection over the twitter stream. In SIGMOD.

1155–1158.

[25] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013. Distributed representations of

words and phrases and their compositionality. In NIPS. 3111–3119.

[26] SathappanMuthiah, Patrick Butler, Rupinder Paul Khandpur, Parang Saraf, Nathan Self, Alla Rozovskaya, Liang Zhao,

Jose Cadena, Chang-Tien Lu, Anil Vullikanti, Achla Marathe, Kristen Maria Summers, Graham Katz, Andy Doyle,

Jaime Arredondo, Dipak K. Gupta, David Mares, and Naren Ramakrishnan. 2016. EMBERS at 4 years: Experiences

operating an open source indicators forecasting system. In KDD. 205–214.

[27] Swit Phuvipadawat and Tsuyoshi Murata. 2010. Breaking news detection and tracking in twitter. InWI-IAT. 120–123.

[28] Mauricio Quezada, Vanessa Peña-Araya, and Barbara Poblete. 2015. Location-aware model for news events in social

media. In SIGIR. 935–938.

[29] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. 2010. Earthquake shakes twitter users: Real-time event detec-

tion by social sensors. In WWW. 851–860.

[30] Jagan Sankaranarayanan, Hanan Samet, Benjamin E. Teitler, Michael D. Lieberman, and Jon Sperling. 2009. Twitter-

stand: News in tweets. In GIS. 42–51.

[31] Sergej Sizov. 2010. GeoFolk: Latent spatial semantics in web 2.0 social media. InWSDM. 281–290.

[32] Kazufumi Watanabe, Masanao Ochi, Makoto Okabe, and Rikio Onai. 2011. Jasmine: A real-time local-event detection

system based on geolocation information propagated to microblogs. In CIKM. 2541–2544.

[33] Jianshu Weng and Bu-Sung Lee. 2011. Event detection in twitter. In ICWSM. 401–408.

[34] Zhijun Yin, Liangliang Cao, Jiawei Han, Chengxiang Zhai, and Thomas S. Huang. 2011. Geographical topic discovery

and comparison. In WWW. 247–256.

[35] Quan Yuan, Gao Cong, ZongyangMa, Aixin Sun, and Nadia Magnenat Thalmann. 2013. Who, where, when and what:

Discover spatio-temporal topics for twitter users. In KDD. 605–613.

[36] Quan Yuan, Wei Zhang, Chao Zhang, Xinhe Geng, Gao Cong, and Jiawei Han. 2017. PRED: Periodic region detection

for mobility modeling of social media users. In WSDM. 263–272.

[37] Chao Zhang, Jiawei Han, Lidan Shou, Jiajun Lu, and Thomas F. La Porta. 2014. Splitter: Mining fine-grained sequential

patterns in semantic trajectories. PVLDB 7, 9 (2014), 769–780.

[38] Chao Zhang, Shan Jiang, Yucheng Chen, Yidan Sun, and Jiawei Han. 2015. Fast inbound top-K query for randomwalk

with restart. In ECML/PKDD. 608–624.

[39] Chao Zhang, Keyang Zhang, Quan Yuan, Haoruo Peng, Yu Zheng, Tim Hanratty, Shaowen Wang, and Jiawei Han.

2017. Regions, periods, activities: Uncovering urban dynamics via cross-modal representation learning. In WWW.

[40] Chao Zhang, Keyang Zhang, Quan Yuan, Luming Zhang, Tim Hanratty, and Jiawei Han. 2016. GMove: Group-level

mobility modeling using geo-tagged social media. In KDD. 1305–1314.

[41] Chao Zhang, Guangyu Zhou, Quan Yuan, Honglei Zhuang, Yu Zheng, Lance M. Kaplan, Shaowen Wang, and Jiawei

Han. 2016. GeoBurst: Real-time local event detection in geo-tagged tweet streams. In SIGIR. 513–522.

[42] Liang Zhao, Feng Chen, Chang-Tien Lu, and Naren Ramakrishnan. 2016. Multi-resolution spatial event forecasting

in social media. In KDD.

[43] Liang Zhao, Qian Sun, Jieping Ye, Feng Chen, Chang-Tien Lu, and Naren Ramakrishnan. 2015. Multi-task learning

for spatio-temporal event forecasting. In KDD. 1503–1512.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

34:24 C. Zhang et al.

[44] Liang Zhao, Jieping Ye, Feng Chen, Chang-Tien Lu, and Naren Ramakrishnan. 2016. Hierarchical incomplete multi-

source feature learning for spatiotemporal event forecasting. In KDD. 2085–2094.

[45] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. 2014. Urban computing: Concepts, methodologies, and applica-

tions. ACM TIST 5, 3 (2014), 38:1–38:55.

Received November 2016; revised February 2017; accepted March 2017

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 34. Publication date: January 2018.

