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ABSTRACT
Aspect-based sentiment analysis is a substantial step towards text

understanding which benefits numerous applications. Since most

existing algorithms require a large amount of labeled data or sub-

stantial external language resources, applying them on a new do-

main or a new language is usually expensive and time-consuming.

We aim to build an aspect-based sentiment analysis model from an

unlabeled corpuswithminimal guidance from users, i.e., only a small

set of seed words for each aspect class and each sentiment class.

We employ an autoencoder structure with attention to learn two

dictionary matrices for aspect and sentiment respectively where

each row of the dictionary serves as an embedding vector for an

aspect or a sentiment class. We propose to utilize the user-given

seed words to regularize the dictionary learning. In addition, we

improve the model by joining the aspect and sentiment encoder

in the reconstruction of sentiment in sentences. The joint struc-

ture enables sentiment embeddings in the dictionary to be tuned

towards the aspect-specific sentiment words for each aspect, which

benefits the classification performance. We conduct experiments

on two real data sets to verify the effectiveness of our models.
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1 INTRODUCTION
Sentiment analysis, which aims to identify the subjective opinion

(e.g. positive vs. negative) of a given piece of text, is an essential

task towards text understanding with a broad range of applications,

including recommendations [3, 4] and stock prediction [28, 35].

Aspect-based sentiment analysis [34] takes a further step to iden-

tify the target aspect of sentiment in a given sentence. For exam-

ple, sentences from restaurant reviews “The food is good” and “The
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Restaurant 
reviews

1. Food: “food”, “chicken”, “appetizer”
2. Service: “server”, “staffs”, “waiter”
3. Ambience: “ambience”, “dj”, “décor”
4. Location: “location”, “place”, “view”
5. Drinks: “wines”, “martinis”, “beer”

Positive: “good”, “great”, “nice”
Negative: “gross”, “bad”, “terrible”

Aspect seeds

Sentiment seeds

1. “The rice was also good.”
Output

Training

Unlabeled corpus

Model

Input

2. “The decor is vibrant.”

3. “The hostess is rude to the 
point of being offensive.”

1. (Food, Positive)

2. (Ambience, Positive)

3. (Service, Negative)

Figure 1: An example of aspect-sentiment analysis withmin-
imal guidance. The user only provides small sets of aspect
and sentiment words. The algorithm outputs the identified
aspect and sentiment class for each sentence.

servers are friendly” both convey a positive sentiment, while the

first sentence should be identified as a comment on the Food aspect

and the second on the Service aspect.
Most existing studies on aspect-based sentiment analysis adopt

a supervised framework [7, 10, 15, 18, 22, 36, 40, 41, 45], where

a significant number of labeled sentences are required to train

the model. Nevertheless, such labels are extremely expensive and

difficult to obtain, especially for a new domain or a new language.

Another thread of studies [2, 9, 12, 19, 21, 27, 31, 32, 44] focus on

weak supervision or distant supervision to perform aspect-based

sentiment analysis. However, some of them either rely on external

language resource such as thesaurus information [2, 9, 12, 21, 25, 27,

31] or syntactic structures generated by well-trained NLP tools [19,

32]. In reality, such information is not always available or accurate

in new domains or low-resource languages.

To alleviate the reliance on external language resource and mas-

sive annotations, we develop an aspect-based sentiment analysis

model which requires only a few user-defined seed words and

an unlabeled text collection. More specifically, users only need to

provide a small set of seed words for each aspect class and each

sentiment class. The objective is to build a model to identify the

aspect class and sentiment class for any sentence expressing an

opinion on an aspect class. Comparing to most previous studies

on weakly supervised aspect-based sentiment analysis, our setting

requires significantly less effort or resource from users.

To better convey our intuition, we use Figure 1 as an example.

Suppose a restaurant owner without machine learning knowledge

needs to conduct aspect-based sentiment analysis on reviews of
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her restaurants. The user is fully aware of the aspect classes in

the restaurant domain, which are Food, Service, Ambience, Loca-
tion and Drinks. The user only needs to provide a small set of seed

words for each aspect class and each sentiment class as well as

the unlabeled corpus. For example, the user can specify {“food“,

“chicken”, “appetizer”} for Food aspect, {“server”, “staffs”, “waiter”}

for Service aspect etc., while {“good”, “great”, “nice”} and {“gross”,

“bad”, “terrible”} for Positive and Negative sentiment class respec-

tively. Based on the user-provided seed words and the corpus, our

goal is to train a model to identify the aspect and sentiment class

for a given sentence. For example, given a sentence “The rice was

also good”, the model should output its aspect class as Food and

sentiment class as Positive.
There are several research challenges in this problem. The first is

how to model the aspect and sentiment perspectives of sentences in

the unlabeled corpus. The second is how to utilize the user-provided

seed words to guide the aforementioned modeling process, such

that the learned model can be well aligned with user intention.

In addition, we observe that some sentiment words are only used

for one specific aspect (e.g. “delicious” is only used in the Food
aspect). Hence, another challenge is how to leverage the correlation

between aspect words and sentiment words in a sentence to further

improve the performance.

Our idea to attack the problem is to utilize an autoencoder to

discover the aspect and sentiment structure hidden in sentences. By

training the autoencoder to reconstruct sentences in the unlabeled

corpus, we can learn a “dictionary” where each aspect and each

sentiment can be characterized by a vector in the embedding space,

reflecting the frequent words of the corresponding aspect and sen-

timent. We also design a regularization on the dictionary to instill

the user guidance, such that the learned vectors in the dictionary

remain close to the seed words in the embedding space. Moreover,

we adapt the autoencoder structure so that the model is capable of

learning a sentiment dictionary for each aspect, characterizing the

aspect-specific sentiment in the embedding space.

More concretely, we make the following contributions:

• Modeling the aspect and sentiment of sentences with user guid-
ance. We employ a structure with two parallel autoencoders

to learn the aspect dictionary and sentiment dictionary of

the corpus by reconstructing unlabeled sentences. We pro-

pose a regularization method to integrate user guidance into

the modeling process. We also attach an attention layer to

identify aspect and sentiment words in sentences.

• Characterizing aspect-specific sentiment words.We adapt the

model by joining the aspect and sentiment encoders to re-

construct the sentiment of sentences. Thereby we can learn

a sentiment dictionary for each aspect which captures the

signals from aspect-specific sentiment words.

• Conducting experiments on real data sets.We verify the effec-

tiveness of our proposed methods on two real world data

sets from different domains.

2 RELATEDWORK
In this section, we review unsupervised and weakly supervised

effort in aspect-based sentiment analysis.

Lexicon-based methods. A series of studies on aspect-based

sentiment analysis utilize aspect and/or sentiment lexicons. Some

methods directly leverage an existing lexicon from an external

source, such as [27] which uses a sentiment lexicon. Other meth-

ods develop algorithms to automatically build the aspect and/or

sentiment lexicons.

Frequency-based methods construct the lexicons by counting the

frequencies of each word in a given corpus and developing reason-

able measures to distinguish aspect/sentiment words from others.

Hu et al. [9] use a frequency-based method to identify frequent

nouns to build the aspect lexicon. Then, they extract adjectives

adjacent to the identified aspect words to build the sentiment lex-

icon. This method relies on part-of-speech (POS) tags of words

in sentences. Popescu et al. [31] develop another frequency-based

method and achieve improvement from [9], but they rely on more

external resources such as the web statistics data. Scaffidi et al. [33]
also propose a frequency-based method developed from a statistical

test to construct the aspect lexicon but still requires the POS tags.

Syntax-based methods further leverage the syntactic structure

of each word occurrence in the lexicon construction process. Qiu et
al. [32] choose to build the lexicons from some seed aspect or

sentiment words by syntactic rules. They parse the dependency

structure of each sentence and construct the lexicon from the given

seed words. However, the quality of their method heavily rely on

the accuracy of the dependency parser, which can be low on a

new domain without training data. Moreover, the method requires

users to specify syntactic rules, while users are not necessarily

familiar with linguistic knowledge. Although there are some follow-

up studies to improve this algorithm, they still suffer from these

drawbacks [19, 20]. Zhang et al. [42] also utilize similar ideas, with

a different set of rules, as well as a HITS-based algorithm to rank

the aspects. Zhao et al. [43] study to generalize some syntactic

structures for better coverage on aspect extraction.

A recent study [44] also starts with seed aspect and sentiment

words and use pattern-basedmethods. However, their final objective

is to perform aspect-based sentiment analysis on documents, while

our method focuses on sentence-level analysis.

Topic-model-based methods. Generative topic models are also

frequently adopted to model the aspect and sentiment data.

A series of work by Wang et al. [38, 39] propose generative mod-

els to predict rating on each aspect. Nevertheless, their work rely

on additional overall rating data for each review. Titov and Mc-

Donald [37] also propose a multi-aspect sentiment model to jointly

characterize aspect occurrences and sentiment ratings of users. Sim-

ilarly, they rely on the rating as supervision. Mei et al. [24] study a

topic model for the general sentiment as well as the dynamics of

topics. They focus more on corpus level summarization, while our

objective is sentence-level aspect-based sentiment analysis.

Jo and Oh [11] propose a sentence-level generative topic model.

Their model is capable of performing sentence-level aspect-based

sentiment analysis from similar input as ours. However, they only

leverage the co-occurrence signals between words for semantic

proximity, without enjoying the benefit of recent progress on word

embedding. Similarly, Lin and He [16] utilize a seed set of sentiment

words with polarity labels, but with a much larger size.



Zhuang et al. [44] also propose a generative topic model to per-

form sentiment classification on top of the lexicons. Their model

treats each word as an embedding vector and infer their distri-

bution in the embedding space, thus is capable of utilizing the

semantic proximity signals provided by word embedding. However,

this model relies on co-occurrence information within documents,

and thus cannot be directly applied to our sentence-level scenario.

Neural-network-based methods. Recently, there are also some

neural-network-basedmethods focusing on unsupervised orweakly

supervised aspect-based sentiment analysis. He et al. [6] propose
an unsupervised neural model to extract aspects by an attention

mechanism. However, the granularity of aspects generated by their

method tends to be too fined and requires a manual step to map the

learned aspects to the desired aspect classes, whereas our method

can utilize user guidance to generate desired aspect classes. More-

over, they focus more on aspect extraction, and do not study senti-

ment analysis. Karamanolakis et al. [13] explore to use seed aspect

words as user guidance for aspect extraction, but they do not per-

form sentiment analysis jointly. Angelidis et al. [1, 2] also explore

to use seed aspect words as user guidance and perform aspect ex-

traction, but their sentiment prediction module still requires overall

sentiment ratings as training data. Our method only relies on an

unlabeled corpus and some seed words.

3 PRELIMINARIES
In this section, we start by introducing basic notations of our data

set. Then we move on to formalize the research problem.

3.1 Notations
We represent a given corpus as a set of documents D = {di }

n
i=1,

where each document di can be represented as a sequence of sen-

tences di = (s1, . . . , s |di |). A sentence sj consists of a sequence of

words sj = (w1, . . . ,w |sj |), where each word
1 wk takes a value

from a vocabularyV .

For each word w in the vocabulary V , one can derive an em-

bedding vector from word embedding technique (e.g., [26]). More

precisely, the word embedding for eachw ∈ V is a vector ew ∈ Rν ,
where ν is the number of dimensions of the embedding space. The

semantic proximity between two words should be reflected by the

similarity of their embedding vectors. A popular similarity measure

is cosine similarity, defined as:

sim

(
ew , ew ′

)
=

ew · ew ′

∥ew ∥ × ∥ew ′ ∥
(1)

In addition, there are K aspects in the given domain. For each

document di , a subset of sentences contain aspect-specific descrip-

tion along with sentiment orientation. We refer to these sentences

as aspect-sentiment-present sentences, while others are aspect-

sentiment-absent sentences. Each aspect-sentiment-present sen-

tence sj can be associated with an aspect aj ∈ {1, . . . ,K} as well

as a sentiment label yj where yj ∈ {0, 1}. 0 stands for Negative
sentiment, and 1 stands for Positive sentiment.

1
Notice that due to the phrase mining step and the tokenization step during the

preprocessing of each corpus, each “word” wk can actually be a unigram word, a

multigram phrase (e.g., “battery life”, “chocolate cake”) or a subword like “n’t” in

“don’t”. We simply use the term “word” for simplicity.

In principle, a complete pipeline should contain a classifier to de-

terminewhether a sentence is aspect-sentiment-present followed by

a classifier to perform the aspect-based sentiment analysis. Neither

of these sub-tasks have been studied in such a weakly-supervised

scenario where users can only provide keywords. In this paper, we

focus on solving the latter sub-task and leave the more challenging

former sub-task to future work.

Below we will provide a formalized problem description for the

joint analysis of aspect and sentiment.

3.2 Problem Formalization
First, an unlabeled corpus of reviews D from a specific domain

should be given. A domain refers to a relatively consistent category

of products or services, such as the hotel domain, the restaurant do-

main, and the laptop domain. We assume users have a complete set

of aspects of interest in the given domain. For example, in the restau-

rant domain, the set of aspects would be {Food, Service, Ambience,
Location, Drinks}, corresponding to aspects 1 to K respectively.

Users can provide some seed aspect words and seed sentiment

words as guidance. Seed aspect words are a group of word sets

VA1
, . . . ,VAK , where each word setVAt ⊂ V corresponds to an

aspect. Similarly, seed sentiment words can be denoted as VS0 and

VS1 , corresponding to Negative and Positive sentiments.

Example 1. In the example illustrated in Figure 1, aspect 1 is Food
and its seed words given by users are VA1

= { “food“, “chicken”,
“appetizer” }. Similarly, aspect 2 Service has a set of seed words
VA2

= {“server“, “staffs”, “waiter”}. Seed sentiment words VS1 =

{“good“, “great”, “nice”}, and VS0 = {“gross“, “bad”, “terrible”}.

Notice that we do not require a ridiculously large set of seed

words from users. For example, only 5 words for each aspect or

each sentiment class would be sufficient. This setting can be easily

fulfilled within minutes by a user with common sense knowledge

about the data without any additional linguistic expertise, language

resource or exhaustive labor.

The problem can be formalized as:

Problem 1. Given a corpus of review documents D, some seed
aspect wordsVA1

, . . . ,VAK for each of the K aspects, and seed sen-
timent wordsVS0 ,VS1 for Negative and Positive sentiments, we aim
to develop a classifier such that for any aspect-sentiment-present sen-
tence sj , we can output its aspect label and corresponding sentiment
labels (aj ,yj ).

It is worth noting that this problem aims to perform sentence-
level aspect and sentiment analysis, which is a more challenging

task from the document-level aspect-based sentiment analysis prob-

lem studied in [2, 44]. In document-level analysis, even if the algo-

rithm misclassified a few sentences, the final output could still be

correct if there are multiple sentences referring to the same aspect.

In contrast, in sentence-level analysis, the algorithm needs to strive

for the correctness of every sentences. The performance evaluation

will also be based on sentence-level correctness. More importantly,

if we can perform reasonable good sentence-level aspect-based sen-

timent analysis only with a few seed words provided by users as

guidance, we can essentially perform document-level aspect-based

sentiment analysis in the same manner.



4 ASPECT SENTIMENT AUTOENCODER
In this section, we describe a neural model to characterize the aspect

and sentiment for each sentence in a given corpus.

4.1 Sentence Representation with Attention
For each sentence sj , we first construct its vector representations for

aspect and sentiment respectively, denoted as zAj and zSj . The aspect
vector representation zAj aims to summarize the aspect-relevant

information from the sentence in the embedding space, while the

sentiment vector representation zSj should capture the sentiment-

related information.

Both vectors zAj and zSj are defined as weighted sums of word

embedding vectors ewk for wk ∈ sj where wk is valid, i.e. not a
stop word, a number or a punctuation. More precisely,

zAj =
∑
k

αAk ewk , zSj =
∑
k

αSk ewk

where the weights αAk and αSk are non-negative attention scores

derived from attention models. Generally, the weights αAk and αSk
can be regarded as the probabilities that the k-th wordwk should

be utilized to determine the aspect and sentiment class respectively.

The mechanisms to derive aspect attention and sentiment at-

tention in this model are similar. Therefore, we only present the

aspect attention mechanism. The aspect attention weight αAk can

be calculated based on the embedding of word wk as well as the

global context of the entire sentence. More concretely:

αAk =
exp(uk )∑
k exp(uk )

(2)

where uk is obtained by:

uk = e⊤wk
MAxj , xj =

1

|mj |

∑
k

ewk

The matrix MA ∈ Rν×ν can be learned during the training pro-

cess. xj is the unweighted average word embedding, andmj is the

number of valid words in sj .
The attention mechanism for sentiment is similar, while the

transformation matrix is replaced by another matrixMS .

4.2 Sentence Reconstruction
We have two vector representations zAj and zSj of the sentence sj ,

which emphasize on the aspect and the sentiment of the sentence

respectively. Now we build an autoencoder to extract the hidden

knowledge from massive data by learning to encode these represen-

tations to a low dimension vector and then reconstruct them from

a dictionary. A dictionary is a matrix where each row is a vector in

the embedding space, representing an aspect or a sentiment class.

Learning the dictionary that best recovers sentences in the corpus

is essentially capturing the most frequent semantic regions in the

embedding space, which serves as a good summary of the corpus.

Moreover, since the dictionary shares the same embedding space

with words, it is straightforward to introduce regularization on the

dictionary from user-provided seed words. The regularization will

be described in Section 4.3.

Reconstructing the aspect/sentiment vector. We only elabo-

rate on the reconstruction of the aspect vector. The reconstruction
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Figure 2: A graphical illustration of the aspect sentiment au-
toencoder model.

of sentiment vector is similar. We first reduce the aspect vector

representation zAj to a K-dimension vector by:

pAj = softmax(WA · zAj ) (3)

whereWA ∈ RK×ν
are model parameters to be learned. The soft-

max activation introduces non-linearity and ensures the resulting

compressed vector pAj is non-negative with the ℓ1-norm of 1.

The vector pAj can be viewed as a distribution over different as-

pects where each element represents the probability that sentence

sj belongs to the corresponding aspect. In order to enforce this

property, we try to reconstruct the original aspect vector repre-

sentation of the sentence zAj from pAj , with the help of an aspect

dictionary DA:

rAj = D⊤
A · pAj (4)

where DA ∈ RK×ν
is the aspect dictionary to be learned. Each row

of DA can be regarded as an embedding vector of an aspect in the

embedding space. Ideally, the vector of an aspect should be close to

representative words frequently mentioned in this aspect.

Discussion. Some studies [2, 6] also adopt a similar autoencoder

structure to learn the aspect dictionary. However, instead of deriv-

ing and reconstructing a representation for the entire sentence [6],

we derive and reconstruct two separate representations for aspect

and sentiment respectively.

We also utilize regularization to confine the learned dictionary

to be aligned with user guidance (described below). We extend the

regularization-based method to both aspect and sentiment analysis

and we believe the user guidance required by our method (just seed

words) is substantially less than the guidance required by [2] (seed

words and overall sentiment ratings).

4.3 Regularization
We place several regularization terms on the decoder parameters

DA and DS to leverage the user-provided seed words.

Seed regularization. We leverage the information from seed

words by applying a regularization on the dictionary parameters.

First, we describe the regularization on the aspect dictionary

matrix DA. We create a “prior” matrix RA ∈ RK×ν
with the same



size as parameter DA. The t-th row of RA is assigned with the

average embedding of seed words in the corresponding aspect:

R(t )A =

∑
w ∈VAt

e⊤w
∥
∑
w ∈VAt

e⊤w ∥
(5)

The objective is to penalize when the learned embedding of the

t-th aspect (represented by the t-th row of DA) deviates too far

away from the average embedding of seed words. Accordingly, the

regularization term can be written as:

CA(θ ) =
K∑
t=1

[
1 − sim

(
R(t )A ,D

(t )
A

)]
(6)

where R(t )A and D(t )
A represents the t-th row of RA and DA respec-

tively. The prior matrix and regularization term for sentiment dic-

tionary can be obtained in similar way, denoted as R(y)S and CS (θ ).

Redundancy regularization. Another regularization typically

adopted is the penalty on redundancy of learned dictionaries. The

intuition is to prevent the dictionary from having almost identical

rows. For a learned dictionary matrix D, the regularization term is:

X (D) =



DnD⊤

n − I



 (7)

where Dn is D with each row normalized to a unit length vector,

and I is the identity matrix. This term is also utilized in [6].

We apply the redundancy regularization term on all the dictio-

nary matrices. We define XA(θ ) = X (DA) and XS (θ ) = X (DS ).

4.4 Training Objective
The overall objective is to minimize the loss between the recon-

structed vectors and the sentence representation vectors for both

aspect and sentiment. The similarity between two vectors are mea-

sured by cosine similarity. For each sentence, we aim to maximize

the similarity between the derived sentence representation vectors

and the reconstructed vectors.

In addition, we randomly samplem sentences as negative sam-

ples. We take the average embedding of all the words in the i-th
negative sentence, denoted as xni . We also try to minimize the

similarity between the vector representations of negative samples

and the reconstructed vectors.

Thus, the loss is formalized in a similar way to the objective

functions proposed in [6]:

LA(θ ) =
∑
sj ∈D

m∑
i=1

max

(
0, 1 − sim

(
rAj , z

A
j
)
+ sim

(
rAj , xni

) )
(8)

LS (θ ) =
∑
sj ∈D

m∑
i=1

max

(
0, 1 − sim

(
rSj , z

S
j
)
+ sim

(
rSj , xni

) )
(9)

The final training objective is to minimize the overall loss along

with the regularization term:

L(θ ) = LA(θ ) + LS (θ ) + λ1
(
CA(θ ) +CS (θ )

)
+ λ2

(
XA(θ ) + XS (θ )

)
(10)

where λ1 and λ2 are two hyperparameters given by users to weigh

the effect of different regularization terms.

The model can be trained end-to-end with both the attention

module and the sentence reconstruction module learned together.

5 JOINT ASPECT SENTIMENT
AUTOENCODER

The model described above consists of two parallel autoencoder

structures for aspect and sentiment respectively. However, the oc-

currences of aspect and sentiment words in sentences are correlated.

In this section, we describe a joint autoencoder for aspect and

sentiment in sentences. The model is designed based on the obser-

vation that some sentiment words are specifically used for a certain

aspect. For example, “delicious” is specifically used to express posi-

tive sentiment on Food aspect, while “rude” is often used to express

negative sentiment on Service aspect.
We capture the aspect-specific sentiment words by expanding

the universal sentiment dictionary into several aspect-based sen-

timent dictionaries. To learn the dictionaries, we join the aspect

and sentiment encoder to generate the distributions over the space

of aspect-sentiment pairs. Then we accordingly reconstruct the

sentiment representation of sentences.

Since the attention and aspect reconstruction part is identical

to the model described in Section 4, we only present the different

parts of the model.

5.1 Sentence Reconstruction
In this subsection, we only focus on the joint reconstruction of

sentiment representation vector.

The intuition is to capture the aspect-specific sentiment words

in sentiment dictionaries of each aspect. The occurring probability

of an aspect-specific word in a sentence sj is not only related to the

sentiment class of the current sentence, but also the aspect class

of the current sentence. Therefore, We start by joining the aspect

distribution pAj and the sentiment distribution pSj .
We derive the joint encoded vector pASj by taking the outer

product of pSj and pAj and then flattening it into a vector:

pASj = vec

(
pSj ⊗ pAj

)
(11)

where pASj will be a 2K-dimension vector. The (2t−1)-th element of

pASj can be interpreted as the probability that sentence sj expresses

Negative sentiment on the t-th aspect, while the (2t)-th corresponds
to Positive sentiment on the t-th aspect.

In order to reconstruct the sentiment representation from the

joint aspect and sentiment distribution pASj , we need to learn a

larger sentiment dictionary. More specifically, the sentiment dic-

tionary has to be aspect-specific. We denote the aspect-specific

dictionary as DAS ∈ R2K×ν
, where the (2t − 1)-th and (2t)-th row

form a sentiment dictionary for the t-th aspect.

Now we can reconstruct the sentiment vector zSj from the joint

distribution over aspect and sentiment by:

rSj = D⊤
AS · pASj (12)

By minimizing the loss between rSj and zSj , the (2t − 1)-th and

(2t)-th row of DAS should become the vector representation of the

Negative and Positive sentiment for the t-th aspect in the embedding

space respectively. Notice that the learned sentiment dictionary for

each aspect summarizes all possible sentiment words co-occurred

with the aspect, which include both aspect-specific sentiment words
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Figure 3: A graphical illustration of the joint aspect senti-
ment autoencoder model.

as well as general sentiment words. For example, the embedding for

Positive sentiment on Food aspect should still be close to general

words like “good” and “great”, while also relatively close to aspect-

specific words like “delicious” and “yummy”.

Discussion. An alternative design is to concatenate the aspect

and sentiment vector representation zAj and zSj and directly derive

the joint probability distribution pASj over aspect and sentiment.

However, our preliminary experiments show that the model cannot

learn meaningful attention and dictionaries. It could be due to

the over-complicated interaction between aspect and sentiment

representation vectors in this model which introduces a larger

number of parameters to be learned.

5.2 Regularization
Since we are learning the aspect-specific sentiment dictionary DAS ,

the regularization on the dictionary needs to be adapted accord-

ingly. We construct an expanded prior matrix RAS ∈ R2K×ν
by

repetitively tiling the prior matrix we utilized in Equation (5) into

the new prior matrix RAS . More specifically,

RAS = [R(0)⊤S R(1)⊤S R(0)⊤S R(1)⊤S · · · R(1)⊤S ]⊤ (13)

Essentially, if we regard every two rows in DAS as a sentiment

dictionary for each aspect, then each of them is regularized in the

same way as the general sentiment dictionary DS . However, if

users are willing to give some seed words for each aspect-specific

sentiment, one can easily instantiate a more informative prior reg-

ularization within this framework. We leave this idea for future

extensions.

The regularization term on DAS is similar:

CAS (θ ) =
2K∑
r=1

[
1 − sim

(
R(r )AS ,D

(r )
AS

)]
(14)

The overall loss function is similar to Equation (10) with updated

regularization terms.

Although the major difference of the model structure is only

reflected in the sentiment reconstruction part, the training results

show substantial differences in the aspect reconstruction. The cur-

rent model structure allows the aspect encoder to contribute sub-

stantially to the reconstruction of sentiment representations, es-

pecially those with aspect-specific sentiment words. As the model

minimizes the reconstruction loss, the aspect autoencoder will also

shift some attention to such words and utilize them in the aspect

classification. We present some concrete examples in Section 6.

6 EXPERIMENTAL RESULTS
In this section, we conduct experiments to answer the following

three research questions:

• RQ1. How do the proposed methods perform compared to

baseline methods with similar user guidance?

• RQ2. How do different parameter configurations in the pro-

posed methods affect the performance?

• RQ3. What do the proposed models learn and why do they

perform better?

6.1 Data Sets
We introduce the data sets used in our experiments.

Restaurant. We collect 47, 239 unlabeled reviews on restaurants

from a public Yelp data set
2
. For the purpose of evaluation, we

utilize sentences from SemEval-2016 [30] in the restaurant domain

as ground-truth, where each sentence is labeled with target entities,

entity types and attributes, as well as corresponding sentiment

polarity (Positive, Negative and Neutral). We regard the entity types

as aspect classes, while neglecting the entity type “Restaurant”

since such sentences do not express aspect-specific opinions and

are not our targets. We ignore the attributes of entities since they

provide more fine-grained information. We also remove sentences

with Neutral sentiment class to simplify the problem, but it can be

seamlessly added with an extra set of seed words.

Laptop. We utilize 14, 683 unlabeled Amazon reviews on mer-

chandises in the laptop category, collected by [8, 23]. We also use

labeled sentences on the laptop domain from SemEval-2016 [30]

for evaluation. Similar to the Restaurant data set, each sentence is

labeled with target entities, entity types, attributes and sentiment

polarity. There are originally 21 different entity types. We remove

some rare entity types and only keep the following 8 entity types

as aspect classes: Support, OS, Display, Battery, Company, Mouse,
Software and Keyboard. Again, we ignore the attributes and remove

sentences with neutral sentiment.

6.2 Experiment Setup
Preprocessing. The unlabeled review documents serve as the

training corpus D. We use the sentence tokenizer and word tok-

enizer provided by NLTK3
. We also adopt a phrase mining tech-

nique, SegPhrase [17], to discover phrases such as “mini bar” and

“front desk”, such that they can be treated as a single semantic unit

instead of several. SegPhrase can automatically segment sentences

into chunks of unigram words and multigram phrases.

We then derive the word embedding by training word2vec [26]
on our unlabeled set of documents. For each data set, we train a

2
https://www.yelp.com/dataset/challenge

3
https://www.nltk.org/

https://www.yelp.com/dataset/challenge
https://www.nltk.org/


different set of word embedding. Notice that the corpus used for

word embedding contains multigram phrases from SegPhrase. Thus

each multigram phrase has its own embedding. This is coherent

with [17]. Notice that our method does not rely on a specific word

embedding algorithm so it can be seamlessly replaced by any other

embedding methods.

Methods evaluated. We compare the following methods.

• Cosine similarity (CosSim). Performing aspect and sentiment

classification by simply calculating the cosine similarity be-

tween the average embedding of all words in the given sen-

tence and the average embedding of the seed words of each

aspect/sentiment class. Classifying the sentence into the

aspect/sentiment class with the highest cosine similarity.

• Aspect Sentiment Unification Model (ASUM). A topic model

specifically proposed for aspect-based sentiment analysis

by Jo et al. [11]. The model also takes seed aspect and seed

sentiment words as guidance.

• BERTwithweakly-labeled data (BERT).We utilize a pre-trained

language model BERT [5] (12-layer, 768-hidden, uncased)

to perform aspect and sentiment analysis individually. We

fine-tune the model based on “pseudo-training data” from

the unlabeled corpus by labeling sentences containing any

seed word to the corresponding class.

⋆ Aspect Sentiment Autoencoder (ASA). Our model described

in Section 4 with a parallel autoencoder structure.

⋆ Joint Aspect Sentiment Autoencoder (JASA). Our proposed
model in Section 5 with a joint autoencoder.

Evaluation measures. We evaluate the performance of aspect

and sentiment classification respectively. For both the aspect and

sentiment classification task, we evaluate the performance by accu-

racy, precision, recall and F1-score. To clarify, for the multi-class

aspect classification task, we employ macro-averaged precision,

macro-averaged recall and macro-averaged F1-score as the evalua-
tion measures.

For our neural network model, we run the experiments 10 times

for each method on each data set and report the average perfor-

mance to reduce the effect of randomness.

Configurations. For both data sets, two annotators are asked

to read the unlabeled corpus and write down 10 seed words for

each aspect and each sentiment. Then the two annotators need to

discuss their selections and finally agree on 5 seed words for each

aspect and each sentiment. We will test baseline methods and our

proposed models based on this set of seed words.

We utilize Adam [14] with default parameter setting to optimize

the model. For both data sets, we set the weights for prior regu-

larization and redundancy regularization to λ1 = 10 and λ2 = 0.1

respectively. The model is trained for 15 epochs, where each epoch

contains 1, 000 batches. Each batch contains 50 randomly sampled

sentences. Each randomly sampled sentence is paired withm = 20

negative sentences as negative samples.

6.3 Results
Performance comparison (RQ1). We proceed to evaluate the

performance of aspect classification and sentiment classification

separately on both Restaurant and Laptop data sets. The overall

Table 1: Performance of aspect classification (%).

Data set Method Accuracy Precision Recall F1

Restaurant

CosSim 78.67 65.47 57.39 59.83

ASUM 30.79 27.01 26.25 24.75

BERT 75.98 62.30 80.26 60.83

ASA 80.19 62.95 82.50 66.96

JASA 80.83 63.67 82.57 67.70

Laptop

CosSim 55.81 67.46 60.35 56.81

ASUM 34.24 26.81 32.01 28.21

BERT 56.21 59.49 56.72 54.13

ASA 76.03 76.70 78.94 76.87

JASA 77.16 77.76 79.81 77.97

Table 2: Performance of sentiment classification (%).

Data set Method Accuracy Precision Recall F1

Restaurant

CosSim 77.23 75.57 74.92 75.20

ASUM 71.31 69.47 70.16 69.72

BERT 79.50 77.72 77.99 77.85

ASA 82.06 80.73 80.64 80.68

JASA 82.34 80.95 81.31 81.12

Laptop

CosSim 73.03 74.31 74.40 73.03

ASUM 67.26 66.67 66.75 66.70

BERT 59.68 64.10 71.26 57.52

ASA 74.30 74.83 75.23 74.26

JASA 74.42 74.46 74.94 74.30

performance of aspect classification results are in Table 1 and the

sentiment classification results are in Table 2.

In the task of aspect classification, both of our proposed methods

ASA and JASA are able to achieve the best overall performances in

terms of accuracy. ASA and JASA achieve over 80% of accuracy in

Restaurant data set and 76-77% of accuracy in Laptop data set. The

baselines based on word embedding (CosSim) or pre-trained neural

language model (BERT) also show good performance. Surprisingly,

BERT does not always outperform simple baseline like CosSim in

spite of the extra knowledge it utilizes from the pre-training corpus.

This highlights the challenge of applying pre-trained language

models like BERT on this task since the “pseudo-training data”

for fine-tuning is not necessarily accurate. The topic-model-based

baseline ASUM fails to identify most aspects and therefore has poor

overall performance on both data sets.

Since the aspect analysis module of ASA shares some similarity

to the aspect analysis module in [2], we further compare the per-

formance between ASA and JASA. It can be observed that JASA

with the joint autoencoder structure improves the aspect classi-

fication accuracy on both data sets for +0.7% to +1.1% from the

ASA model with parallel autoencoder structures. We perform a

paired Student’s t-test showing that the improvement from ASA to

JASA is statistically significant on Restaurant and Laptop data set

with significance level 0.1% and 0.5% respectively. This verifies the

benefit of exploiting the correlation between aspect and sentiment

words in sentences.

For sentiment classification, our methods ASA and JASA still

outperform all the other baselines in both data sets, in terms of all

the evaluation measures. Both methods achieve more than 82% of

accuracy in Restaurant data set and 74% of accuracy on Laptop data

set, with +1% to +5% improvement from baseline methods. BERT
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Figure 4: Performance with different number of seeds.

baseline achieves noticeably low performance on Laptop data set for

sentiment classification, because sentences with negative sentiment

in Laptop data set usually contain more complicated expressions

(e.g. “be careful” is Negative whereas “carefully handled” is Positive).
These sentences are likely to be wrongly labeled in the generated

“pseudo-trainig data” and thereby introduce more noises during the

fine-tuning of pre-trained BERT model.

Notice that our reported results are average measures of 10

different results. The reported F1-score is not directly calculated

from the reported precision and recall.

Number of seeds (RQ2). Seed words play an essential role in the

training of our model. We conduct an experiment to understand

how the model performance changes with the number of seed

words. We use the list of 10 seed words for each aspect from one

annotator on both data sets. We randomly pick n seed words from

each list, run our JASA model for 10 times and report the average

performance of macro-F1 and accuracy scores. We vary n from 1 to

7 and plot the results in Figure 4.

From Figure 4(a), we can see that on the Restaurant data set, the

performance of our model improves significantly when n < 5 and

gradually saturates when n ≥ 5. The similar trend can be observed

on Laptop data set, as shown in Figure 4(b). This verifies that our

model only needs around 5 seed words for each aspect to achieve

reasonable performance, which is affordable for most users.

Selection of hyperparameter λ1 and λ2 (RQ2). We explore the

ideal selection of the weighting hyperparameter of prior regular-

ization λ1. We test the performance of JASA on both data sets with

λ1 set to different values from 2 to 50 while keeping λ2 = 0.1.

Figure 5(a) shows that on Restaurant data set, when λ1 is smaller

than 5, both aspect accuracy and sentiment accuracy would substan-

tially drop. When λ1 is set to value from 5 to 50, the performance

remains relatively stable. We can find similar patterns on Laptop

data set, as shown in Figure 5(b). There is a slight performance drop

in aspect accuracy when λ1 is larger than 10.

The results are in line with our expectation as when λ1 is small,

our seed words provide limited regularization to the model which

will lead to poor performance of both aspect analysis and sentiment

analysis. On the other hand, the slight performance drop when λ1
is larger than 10 on Laptop data set also shows the effectiveness of

our model training on the unlabeled corpus. Based on the above

analysis, we can set parameter λ1 to any value between 5 to 10.

We also conduct experiments for the selection of weighting

hyperparameter for redundancy regularization λ2. We compare the

performance of JASA by varying lambda λ2 from 0.01 to 0.5 on

both data sets, while λ1 is set to 10. Figure 6 shows that on both
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Figure 5: Performance of JASA with different values of λ1.
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Figure 6: Performance of JASA with different values of λ2.

data sets, the performance of both tasks is not very sensitive to the

value of λ2. This might imply that the redundancy regularization,

although also adopted by other studies [2, 6], does not necessarily

play a role in our models. In the future, we may consider a different

redundancy regularization or simply remove this regularization.

Visualizing aspect-specific sentiment dictionary (RQ3). We

compare learned aspect-specific sentiment dictionary DAS to the

seed words to understand our dictionary learning module. For the

t-th aspect with the sentiment y ∈ {0, 1}, we denote the average

embedding of seed sentiment word R(y)S as v, and the learned em-

bedding in the aspect-specific dictionary D(2t−1+y)
AS as v′.

Figure 7 shows the visualization of v and v′ for Food aspect

on both Positive and Negative sentiment. It can be observed that

the learned embedding v′ in the aspect-specific dictionary shifts

towards the embedding of aspect-specific sentiment. For Positive
sentiment, as presented in Figure 7(a), v′ drifts towards words like
“delicious”, “tasty” and “yummy”, which are specifically used to

compliment Food aspect. For Negative sentiment (Figure 7(b)), v′ is
more close towords like “bland” and “flavorless”, which are common

words to criticize on Food aspect. On the other hand, v′ does not
completely distance itself from the average seed embedding v due

to the regularization. This is because v′ still needs to reflect general
sentiment words like “good” or “terrible”.

We also try to identify the sentiment words that gain the most

“density” by learning the aspect-specific sentiment dictionary. To

be specific, we find words with the most boosted density from a

kernel function centered at v to another kernel function centered

at v′. We instantiate the kernel function Kv(e) = exp

(
sim(e, v)

)
,

which is proportional to the probability density function of a von

Mises-Fisher distribution with the concentration parameter as 1.

For each wordw ∈ V , we calculate the difference of densities by:

δw = Kv′(ew ) − Kv(ew )

and rank the words by δw from the largest to the smallest.



Table 3: Comparing the learned embedding in dictionary
DAS and the average seed embedding. The table lists words
with the most boosted densities δw in a cosine-similarity-
based kernel function by moving the center from the aver-
age embedding of seed words v to the learned embedding in
the dictionary v′.

Aspect Sentiment Words with largest δw

Location

Positive cozy, sultry, nice

Negative ventured, seattle, resident

Drinks

Positive awesome, huckleberry, boozy

Negative vomit, substance, clump

Food

Positive delicious, tasty, yummy

Negative yuck, bland, flavorless

Ambience

Positive nice, cool, clean

Negative vomit, enemy, dishonest

Service

Positive friendly, courteous, personable

Negative frustrated, time, acknowledgement
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Figure 7: Visualization of learned embedding v′ in the dic-
tionary DAS on certain aspect and sentiment comparing to
the average embedding of seed words v.

Table 3 presents the top-3 words for each aspect-sentiment pair.

As one can see, many words are aspect-specific sentiment words.

For example, for aspect Food with Positive sentiment, the top-ranked

words are “delicious”, “tasty” and “yummy”, while for its Negative
sentiment, words like “bland”, “flavorless” are ranked high.

Case study (RQ3). In case study, we show the attention output of

JASA and ASA to take an in-depth look at how JASA outperforms

ASA. Figure 8 shows the aspect attention weights αAk ’s on sentences
where JASA makes the correct classification but ASA fails.

In the first example shown in Figure 8(a), ASA places the most

attention on the word “specials”, which is sufficient to narrow down

the possible aspect classes to Food or Drinks, but not enough to

pinpoint the correct aspect class. In contrast, JASA places much

more attention on the word “delicious”, which is usually a sentiment

word, but can also imply the aspect class since it is specifically used

to describe food. Hence, JASA correctly classifies the sentence into

Food aspect class with a high confidence (with predictive probability
of 0.99). This is because the joint structure of aspect and sentiment

in JASA allows the aspect attention mechanism and reconstruction

mechanism to fit the training objective of sentiment representation

reconstruction, which enables the aspect-specific sentiment words

to benefit the aspect classification in such cases.

The second example is shown in Figure 8(b). This sentence is

labeled with the Ambience aspect and the Positive sentiment. It can

be observed that ASA does not have a particularly strong attention

on one specific word. Instead, its attention scores are almost evenly
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Figure 8: Comparative case study on aspect attention gener-
ated by ASA and JASA respectively.

distributed on words “fun”, “live” and “entertainment”. It mistakenly

classifies the sentences into Location aspect. Again, JASA shifts

more attention on the word “fun”. Since “fun” is more frequently

related to the Ambience aspect, JASA is able to output the correct

aspect label Ambience.

7 CONCLUSION
In this paper, we study to develop sentence-level aspect-based sen-

timent analysis with minimal user guidance, where users only need

to provide a small set of seed words for each aspect class and each

sentiment class as well as an unlabeled corpus of reviews. We uti-

lize the autoencoder structure with its dictionary regularized by

user-provided seed words for both aspect and sentiment modeling.

We also propose a model with joint aspect and sentiment encoder to

capture aspect-specific sentiment words. The experimental results

show the effectiveness of our model on two data sets.

Our methods can be further extended to leverage more signals

from the unlabeled corpus that can potentially benefit the aspect-

based sentiment analysis. We provide some possible future direc-

tions: 1) Utilizing correlation of aspect-based sentiment within doc-

ument: A basic intuition is that the same review usually expresses

the same sentiment on the same aspect. Integrating the document

structure into the model to capture this signal may benefit the senti-

ment modeling. 2) Leveraging user guidance in an interactive way:

Allowing users to further modify and improve their seed words

based on learned models. Our method can be utilized to further

improve the performance of some existing prototype system [29].
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