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Abstract. We study users’ behavioral patterns in ephemeral social net-
works, which are temporarily built based on events such as conferences.
From the data distribution and social theory perspectives, we found sev-
eral interesting patterns. For example, the duration of two random per-
sons staying at the same place and at the same time obeys a two-stage
power-law distribution. We develop a framework to infer the likelihood
of two users to meet together, and we apply the framework to two mo-
bile social networks: UbiComp and Reality. The former is formed by
researchers attending UbiComp 2011 and the latter is a network of stu-
dents published by MIT. On both networks, we validate the proposed
predictive framework, which significantly improve the accuracy for pre-
dicting geographic coincidence by comparing with two baseline methods.

1 Introduction

An ephemeral social network indicates a social network temporarily created dur-
ing an event such as a conference, game, or banquet. Such social networks are
usually formed quickly and dissolve in minutes as well. Ephemeral social net-
works exist in both online and offline domains. In fact, these networks play an
important role to expand users’ social circle and strengthen social ties [16]. Dif-
ferent persons have very different behaviors in the ephemeral social networks. It
is interesting and also important to understand what are the driving forces for
persons to select targets to meet.

There has been a few related works. For example, Eagle et al. [9] studied how
friend relationships are formed by tracing users’ geographic information through
Wi-Fi, GPS and Bluetooth. They found that friends demonstrate distinctive
temporal and spatial patterns in their physical proximity and calling patterns.
Crandall et al. [7] investigated how social ties between people can be inferred
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Fig. 1. An ephemeral social network via the Find & Connect system at Ubicomp’11 [5].

The left figure shows the recommended users for “Chin”; the right figure shows the
detailed information of a recommended user.

from co-occurrence in time and space. Tang et al. [25] developed a general learn-
ing framework for inferring the types of social ties in social networks; and [22]
further extended the problem of inferring social ties across heterogeneous net-
works by incorporating social theories such as social balance theory and social
statu theory. However, all the aforementioned work only consider the problem
in normal social networks. The situation is very different in ephemeral social
networks. In a normal social network, friends tend to meet together to share re-
cent experiences. However, in an ephemeral network, people are often inclined to
make new friends. For example, in an academic conference, people may want to
build new research collaborations with people who they may do not know before.
An interesting question is: how likely are two random persons in an ephemeral
social network to gather together, and how does the likelihood depend on users’
personal information and their onsite spatial information?

We use an example to clearly motivate this work. Figure 1 shows the interface
of our developed Find & Connect system on a mobile phone. The system is de-
signed for facilitating social interactions in ephemeral social networks, and has
been deployed in several real scenarios including Ubicomp’11, Nokia Research
Center office, and Tsinghua Centenary Celebration. Employing the Ubicomp’11
conference as the example, the system allows the user to locate friends, check
attendees in surrounding areas. One important feature of the system is to recom-
mend people to meet. The left of Figure 1 shows the recommendation results for
user “Chin”. The user can then see each recommended user (right figure). Ob-
viously, an accurate recommendation algorithm should consider not only social
networking information, but also the onsite location information.

We formalize the problem of inferring geographic coincidences in ephemeral
social networks. The goal is to investigate the underlying patterns that drive
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people to meet together, and to predict how likely a geographic coincidence
would happen in the near future. The problem presents a set of challenges.

– Making new friends. As stated before, an important objective of users join-
ing an ephemeral social network (event) is to build new connections. It is
important to predict new friendships in social networks.

– Combining normal networks. An ephemeral social network is not standalone.
For example, attendees of an academic conference can be connected to aca-
demic social networks such as ResearchGate or Arnetminer. However, it is
unclear how to combine the various normal networks for better prediction of
the geographic coincidences.

– Partially observed. The ephemeral social network is always partially ob-
served. Even the best organized event, there might be a portion of missing
data due to various reasons, e.g., device failure and privacy protection. How
to build a predictive model by considering the unlabeled data is a challenge.

To address the above challenges, we first study the behavioral patterns on how
users meet together. We have found several interesting phenomena from both
data distribution and social theory aspects. The duration of two persons staying
at the same place and at the same time obeys a two-stage power-law distribution.
Ten minutes seems to be a boundary for users to staying together. From another
perspective, ephemeral social networks represent more elite-related activities:
elite users tend to meet together and ordinary users are also inclined to meet elite
users. We also study two important social theories, homophily and structural
hole, in the ephemeral social network.

Based on the discovered behavioral patterns, we present a semi-supervised
predictive framework, which incorporates the various patterns in a unified model.
An efficient algorithm is developed to learn the framework. Our experiments on
two different networks validate the effectiveness of the proposed methodologies.
Comparing with several baseline methods using SVM and CRF, the proposed
model can improve the prediction performance by 8-19% (in terms of F1-score).

2 Preliminaries

In this section, we first define the ephemeral social network and present our
problem formulation. Then we describe the data sets used in our empirical study.

2.1 Problem Formulation

An ephemeral social network is a temporary and dynamic network. Generally, we
can consider users from (different) normal social networks form the temporary
structure and behaviors in the ephemeral social network. For example, in a game,
users may form different groups based on their relationships and intimacy, while
in a conference people gather in a technical session according to their interest.

Let G = (V,E,W) represent a normal social network, where V is a set of
users, E ⊂ V × V is a set of relationships between users, and W is an attribute
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matrix associated with users V . An ephemeral social network can be defined as
G′(t) = (U t,Xt, Y t), where U ⊂ V is a subset of V indicating users forming
the ephemeral social network come from a normal social network, Xt denotes
an ephemeral attribute matrix for users in U t, and Y t denotes a set of user
behaviors we want to predict, e.g., whether a user will join a seminar.

Without loss of generality, we employ the ephemeral network built in the
UbiComp 2011 conference as the example to define our problem. Users of the
ephemeral network are researchers from universities and companies. Their corre-
sponding normal network can be defined as the coauthor network. The ephemeral
attributes include where the user is, when the user will give a talk, what the user
is doing, etc.

A usual predictive task in an ephemeral network is to predict users’ future be-
havior by leveraging the normal social network and users’ ephemeral attributes.
In this work, we consider the problem of geographic coincidence prediction. The
objective is to predict whether two users will meet together in the near future.
Formally, the problem can be defined as:

Problem 1. Geographic coincidence prediction. Given a normal network
G = (V,E,W) and an ephemeral network G′(t) = (U t,Xt, Y t), the goal is to
learn a predictive function:

f : {G′(t),G} → Y (t+1)

where y(t+1)
ij ∈ {0, 1} indicates whether user ui and uj will meet at time (t+1).

Roughly speaking, we try to infer whether two users will gather at approximately
the same place and at approximately the same time. More accurately, we say
that two users ui and uj have a geographic coincidence (i.e., yij = 1) if their
distance is shorter than a constant (D meters) for more than M minutes. The
definition of geographic coincidence might be different in some other scenario.
For example, in the MIT’s Reality data set, users’ coincidence are measured by
Bluetooth devices.

2.2 Data Sets

We study the problem of geographic coincidence prediction on two different types
of social networks: UbiComp and Reality.

UbiComp. The UbiComp data set is collected by Find & Connect1, a social net-
work platform built for participants of conferences or meetings for finding confer-
ence resources and people and connecting with them. With a positioning system
based on RFID orWi-Fi, Find &Connect records the indoor location data for each
user and provides indoor location-based services such as finding where the paper or
session is being held, who are the people attending the sessions, where people are
in the conference and when, and where was the last time that two users have met.
Therebywe are able to acquire logs of physical proximity, which implies a probable

1 An ephemeral social networking system developed in Nokia Research Center.
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encounter and interaction between users, as well as social networking connections.
The system has been deployed at the UIC 2010 conference [28], Nokia GCJK in-
ternal marketing event and UbiComp 2011[5].

We use the UbiComp data set, which consists of 234 users and 69,844 location
logs during the 3-day conference. The data set is divided into time intervals
by day. The proximity encounters are recorded from mining locations of users
equipped with RFID tags using RFID readers and a modified version of the
LANDMARC algorithm [19]. Given this, we say that two users ui and uj have
a geographic coincidence if their distance becomes shorter than D meters at a
specific time, and remains within the range of [0, D) for more than M minutes.2

Since most attendees of UbiComp are academic researchers, we can acquire
their publication lists and coauthor relationships by their names in ArnetMiner3

[24], which consists of 1,756,147 authors and 1,813,514 publications as well as
the coauthor relationships between users. Finally, out of 234 UbiComp users,
206 of them are found in ArnetMiner. We thereby obtain their research profiles
including their publications, co-authorship and attended conferences.

Reality. The Reality data set is collected from 106 users from September 2004
to June 2005 in MIT. A pre-installed software on each user’s mobile phone will
record their communication logs as well as physical proximity logs. The communi-
cation logs include voice calls and short messages. The physical proximity logs are
recorded by the Bluetooth sensor, which scans for other contacts on average ev-
ery 5 minutes. If the Bluetooth sensor of a user detects another sensor at a certain
time, a physical proximity event between these two users will be recorded. Reality
data set contains 162,700 communication logs and more than 4 millions physical
proximity logs in total. Similarly, the Reality data set is divided into time intervals
by day.

In addition to the geographic coincidences, the Reality data also contains
the friendships between two users collected by querying the users, which form
a friendship network between all the users. In the Reality data set, we directly
regard each proximity log as a geographic coincidence since the detection range
of a Bluetooth sensor is approximately 5-10 meters, which is close enough for a
geographic coincidence.

3 Observations

In this section, we conduct the following observations based on the UbiComp
data in order to get a better understanding on the users’ behavioral patterns
and structural properties of ephemeral social network:

– Two-stage power-law distribution. We analyze the duration distribution of
geographic coincidences and find that it satisfies a certain two-stage power-
law distribution.

2 We empirically set D = 3 and M = 10, which is based on the observation in [11]
and the “ten-minutes” phenomenon we discovered in observations (Cf. §3).

3 http://arnetminer.org

http://arnetminer.org
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Fig. 3. Link Homophily

– Link homophily. How does the user similarity influence the geographic coin-
cidences pattern?

– Opinion leaders. What is the role played by opinion leaders in ephemeral
social network?

– Structural hole. Do users who span a structural hole have geographic coin-
cidences with different people?

Two-Stage Power-Law Distribution. We first study the duration patterns
of two users staying at approximately the same place and at approximately
the same time. Figure 2 plots the distribution in a log-log space. It can be
interestingly seen that the distribution can be described using a two-stage power-
law and 10 minutes seems to be an inflexion point. When the duration time is
less than 10 minutes, the exponent of the corresponding power-law is -1.2315,
while, when the duration time increases to more than 10 minutes, the exponent
becomes -5.5221. The phenomenon implies that a large portion of coincidences
might be random based on users’ location. For example, acquaintances generally
say hello when they meet and make small talk (less than 10 minutes). On the
other hand, targeted meetings may last a longer time.

Based on this observation, we set the duration threshold as M = 10 for the
definition of geographic coincidence on the UbiComp data set. That is to say,
on the UbiComp data set we only consider geographic coincidences longer than
10 minutes since they are more likely to indicate actual social interactions.

Link Homophily. The principle of homophily [16] points out that users with
higher similarity are more likely to establish relationships. In this work we mainly
study the similarity in research area since most of the users are researchers and
they attend the conference in order to get feedback or establish new collabora-
tions in academia. The following criteria are employed to measure users’ research
similarity: (1) Coauthored paper count (CP): It counts the coauthored publication
number for each pair of users; (2) Common coauthor count (CC): It counts the
number of common coauthors between two users; (3) Common conference ratio
(CR): We construct conference vectors for all users with their attendance times
of different conferences. The common conference ratio is the cosine similarity of
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Fig. 4. Observation of geographic coincidences between opinion leaders (OL) and or-
dinary users (OU)

two users’ conference vectors; (4) Research similarity (RS): Jaccard similarity of
the research interests of two users.

We rank all the user pairs by the above criteria and calculate the geographic
coincidence probability of the top 6004 pairs of users. The average geographic
coincidence probability is also calculated for comparison, as shown in Fig. 3.
We can observe that user pairs with highest CP, CC, or CR are more likely
to have geographic coincidences than average. These results are expected. Users
with more coauthored papers have direct connections between them and thus are
more likely to meet each other; more common coauthors implies a strong effect
of triadic closure [10], which influences the geographic coincidence probability
and attending more common conferences increases their chance to know each
other. However, a surprising observation is that geographic coincidence proba-
bility of user pairs with highest research similarity are approximately 2% lower
than the average probability. This result indicates that attendees of an academic
conference may tend to talk with people that have different research interests in
order to get new ideas.

Opinion Leader. The two-step flow theory [2,14,16] suggests that ideas usually
flow first to “opinion leaders” and then to more people from them. There are
several algorithms to detect opinion leaders in social networks. In this work we
use two different indicators to define opinion leaders: publication count and H-
index. We rank all the users by their publication count or H-index and take
the top 25% as opinion leaders. Fig. 4 presents the comparison of geographic
coincidence probability between different types of user pairs. It is clearly shown
that ordinary users (OU) and opinion leaders (OL) are more likely to have a
geographic coincidence than two ordinary users, which implies that people tend
to communicate with opinion leaders. We also find that two opinion leaders have
the highest probability of geographic coincidence. This is expected because in
an academic conference, opinion leaders are more willing to exchange ideas and
hence have more direct interactions.

4 Probability of top 200, 400 pairs of users yields similar results.
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Structural Hole. In a social network, a person is called to span a structural
hole if she is connected to two people in different parts of networks that are
otherwise not well connected to each other [3]. It is claimed that such nodes have
an informational advantage with connection to people who are not linked to each
other, and hence are exposed to a more diverse source of ideas. An interesting
question is, whether a person who spans a structural hole in coauthor network
will also present a higher diversity in its geographic coincidence pattern? In this
paper, we simply define node A’s “structural hole score” in a coauthor network
by the number of author pairs (B, C) which satisfies that A is the only common
coauthor. We rank all the users by their structural hole score, and calculate the
average clustering coefficient of top-r users over ephemeral social networks of all
the time intervals in UbiComp data set. We also rank the users by publication
count and H-index to provide a comparison to opinion leaders. The result is
presented in Fig. 5. It is shown that users with structural hole score ranking in
the top 20 tend to have lower clustering coefficient (confirmed by paired t-test
with 95% significance), but it turns out to be close to the average when taking the
top 50 users into account. The clustering coefficient of opinion leaders, however,
always remain consistent with average level. It indicates that users who have
a higher structural hole score also tend to have geographic coincidences with a
wide variety of people, but the difference is slight since in an ephemeral social
network, a larger proportion of users seeks for new relationships and hence have
geographic coincidences with various people.

4 Factor Graph Model

We employ a factor graph model to predict the geographic coincidences between
users. The basic idea is to construct a graphical model by modeling each pair of
users as a node. We then define different types of factor functions to incorporate
different factors into the prediction task, and define an objective function based
on the joint probability of the factor functions. The model can be trained by
optimizing the objective function.
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As Fig. 6 demonstrates, at time t, we map the event of geographic coincidence
of every pair of users (ui, uj) as a node ytij in our graphical model, corresponding
to an event to predict in the ephemeral social network G′(t). We use Y to rep-
resent the global set of all ytij . For labeled samples, when users have geographic
coincidence we have ytij = 1, otherwise ytij = 0; for unlabeled samples, we leave
ytij =? to predict. The factor graph model was previously used for inferring social
ties in social networks [25].

We define three different kinds of factor functions as follows:

– Attribute factor function f(xij , ytij). It incorporates the attribute value
xij of each pair of users corresponding to ytij , where xij = [wi·,wj·] combines
the attribute vector of both users.

– Temporal correlation factor function g(ytij , y
t+1
ij ). It represents the tem-

poral dependencies between the geographic coincidences indicated by ytij and

yt+1
ij .

– Social correlation factor function h(Y t
c ). Y

t
c represents a clique which

consists of a set of ytij . It leverages the social correlation between user pairs.

The three factor functions can be instantiated in different ways. In this work,
we define them as exponential-linear functions. Formally, we define the attribute
factor function as

f(xij , y
t
ij) =

1
Z1

exp{αTΦ(xij , y
t
ij)} (1)

where α is the weighting vector; Φ(xij , ytij) is the feature vector function.
The temporal correlation factor function can be defined as

g(yt
ij, y

t+1
ij ) =

1
Z 2

exp{βTg(yt
ij , y

t+1
ij )} (2)

where β is the weighting vector; g(ytij , y
t+1
ij ) is an indicator function.

We define the social correlation factor function in a similar way

h(Y t
c ) =

1
Z 3

exp{λTh(Y t
c )} (3)
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where λ is the weighting vector; h(Y t
c ) is an indicator function, taking the geo-

graphic coincidences of a clique of user pairs as input. Z1, Z2 and Z3 are nor-
malizing factors. This definition of factor function has been used in a graphical
models such as Markov Random Fields [12] or Conditional Random Fields [15].

The joint distribution over all the Y can be written as

P (Y |G,G′) =
1
Z

exp{
∑

t

∑

yt
ij

αTΦ(xij , y
t
ij) +

∑

i,j

∑

t

βTg(yt
ij , y

t+1
ij )

+
∑

t

∑

Y t
c

λTh(Y t
c )} =

1
Z

exp{θTS} (4)

where θ = [αT ,βT ,λT ]T is the parameter vector;
S = [

∑
t

∑
yt
ij
Φ(xij , ytij),

∑
i,j

∑
t g(y

t
ij , y

t+1
ij ),

∑
t

∑
Y t
c
h(Y t

c )]
T denotes all the

features and Z is the normalizing factor.

Model Learning. We learn the FGM by estimating the parameter configura-
tion θ to optimize the log-likelihood of observed data. The observed data could
be incomplete and thus pose challenges to model learning. We regard the entire
factor graph as a partially labeled graph. Let YL denote the set of known ge-
ographic coincidences, and YU as the set of unknown geographic coincidences.
The learning task can be formally described as to find a parameter configuration
θ∗ such that θ∗ = argmaxθP (YL|G,G′).

We define the log-likelihood as the objective function

O(θ) = logP (YL|G,G′) = log
∑

Y |YL

exp θTS−log Z

= log
∑

Y |YL

exp θTS−log
∑

Y

exp θTS (5)

A gradient decent method (Newton-Raphson method) is used to optimize Eq. 5.
The gradient for each parameter is

∂O(θ)
∂θ

=

∑
Y |YL

exp θTS · S
∑

Y |YL
exp θTS

−
∑

Y exp θTS · S∑
Y exp θTS

= EP (Y |YL,G,G′)S−EP (Y |G,G′)S (6)

We use Loopy Belief Propagation (LBP) to approximate the gradient and update
θ iteratively.

Predicting Geographic Coincidences. With the learned parameter con-
figuration θ, the prediction task is to find a Y ∗

U which optimizes the objective
function, i.e., Y ∗

U = argmaxYU
P (Y |G,G′).

We employ similar methodology in this optimization task. Instead of calcu-

lating the joint probability, we calculate the marginal probability for each y(t+1)
ij

and predict them as positive when the marginal probability is greater than 0.5,
otherwise the event will be predicted as negative.
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Table 1. Statistics of UbiComp and Reality data sets

Data set Users Labeled samples Unlabeled samples

UbiComp 243 17,391 23,871
Reality 106 7,384 2,140

5 Experimental Results

5.1 Experimental Setup

Data Sets. We validate the effect of our proposed model on two different data
sets: UbiComp and Reality, and compare the result with two baseline methods.
A brief statistics of the data sets is shown in Table 1.

UbiComp data set includes user location logs on September 19th and Septem-
ber 21st. In this work, we divide the data set into two time intervals, namely
the two days of the conference. We regard all the geographic coincidences on
September 19th as labeled and predict the geographic coincidences on Septem-
ber 21st.

For Reality data, we select 12 consecutive days, each with more than 100
communication logs for our experiments. Then we define the first 10 days as
labeled. The task is to predict the geographic coincidences in the last 2 days.

Baseline Methods. We define two baseline methods for the geographic coin-
cidences task.

– SVM. This method only uses the users’ attribute to train SVM and to predict
the geographic coincidences.

– CRF. We consider the time correlation and establish sequential conditional
random fields for each user pair.

We evaluate the performance of geographic coincidence inference in terms of
precision, recall and F1-score.

Factor Definitions. For both data sets, we define the temporal correlation
factors between two consecutive time intervals for each user pair.

In UbiComp data set, we also define four different types of social correlation
factors according to the principle of homophily (Cf. Section 3): if two users are
similar in some aspects, they will be more likely to have geographic coincidence
with the same person. To define the social correlation factors based on homophily
of coauthored paper count (CP), we first rank all the user pairs by CP and
select those within the top 150, denoted by (ui, uj). Then for every other user
un, we add social correlation factors CPInf between ekin and ekjn. The other
three homophily-based social correlation factors CCInf, CRInf and RSInf can
be defined similarly.

In Reality data set, we define social correlation factors based on the structural
balance theory [10]. It suggests that people in a social network tend to form into
a balanced network structure. To be specific, for a triad, the balance theory
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Table 2. Prediction performance comparison(%)

Date set Method Precision Recall F1-score

UbiComp
SVM 34.5 20.4 25.6
CRF 33.2 39.4 36.0
FGM 34.0 65.4 44.7

Reality
SVM 84.1 64.4 72.9
CRF 73.6 85.8 79.2
FGM 85.1 81.0 83.0

claims that all of the three users or only one pair of them should be friends.
We employ two kinds of connection, physical proximity connection and calling
connection (voice call or SMS), to identify triads. Then for each triad ui, uj ,
and uk, we establish social correlation factors between every two user pairs.
Since there are two types of connections, we can define three different social
correlation factors regarding the connection types of the involved two user pairs:
CCTri (both calls), PCTri (one call, one physical proximity) and PPTri (both
physical proximity).

5.2 Results and Discussion

Performance Comparison. We compare the prediction performance between
our methods and the baselines, as shown in Table 2. It is shown that our model
outperforms other methods in both two data sets. In UbiComp data set, FGM
achieves an improvement of approximately 8-19% in terms of F1-score compared
to the baselines, and also improves recall by approximately 26-45%. Although
SVM shows a higher precision of 34.5%, the precision of the proposed model is
very close to the baseline (34.0%). In Reality data set, FGM also gives a rise of
4-10% compared to the baselines in terms of F1-score. In addition, FGM achieves
the highest precision among all the methods. We can also observe the effect of
time correlation, employed by CRF. The time correlation factor improves the
F1-score of CRF by about 10% in UbiComp data set and approximately 7% in
Reality data set.

Contribution of Social Correlation Factors. To further investigate the con-
tribution of different social correlation factors in the prediction task, we remove
all the social correlation factors and evaluate the performance by adding each
of them individually into the model. Thereby we can measure their contribution
by the improvement they achieve to F1-score, as shown in Fig. 7.

It is shown that in both data sets, all social correlation factors improve the per-
formance. In UbiComp data set, CRInf factor contributes the most to F1-score
amongst the four social correlation factors by an average improvement of 3%. It
implies that users who often attend common conferences may have a stronger
implicit correlation since they probably have been in the same ephemeral social
network before. Its effect is even stronger than those with explicit coauthorship
(CPInf). The effect of CCInf, RSInf and CPInf factors are also observable.
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Fig. 7. Analysis of social correlation factors on F1-score

In Reality data set, it can be observed that PPTri achieves the highest
improvement of approximately 3%. It implies that ephemeral social network
probably obeys the structural balance theory and indeed helps improve the per-
formance. PCTri and CCTri also contribute significantly to the improvement
of performance. It indicates that joint with relationships in normal social net-
work such as mobile social network, triadic social correlation factors based on
structural balance theory still contributes to the prediction performance.

Case Study. We further conduct a case study to investigate why our proposed
model outperforms other baseline methods. Fig. 8 presents the prediction result
on a subset of UbiComp data generated by three different approaches: SVM,
CRF and FGM. Green solid lines represent true positive samples; red solid lines
for false negative samples and blue solid lines for false positive samples. In addi-
tion, we use black dash lines to point out the social correlations between users.

It can be observed that CRF tends to predict more geographic coincidences
than SVM with the help of time correlation. It successfully detects more geo-
graphic coincidences (e.g. JS-TY and MS-KK), albeit few of them are incorrect
(Cf. Fig. 8(b)). Our proposed approach further leverages the social correlation
factors to improve the prediction result. For example, when MS and JS have
a higher common coauthor count, geographic coincidences of MS and KK may
increase the chance of a geographic coincidence between JS and KK. Our pro-
posed model is able to capture such social correlations and infer the geographic
coincidences between KK and JS from the prediction between MS and KK. The
social correlation factors benefit the prediction result of FGM by significantly
improving the recall, as shown in Fig. 8(c).

6 Related Work

Dynamic Behavior Analysis. There are several works on social dynamic
behavior analysis. Zhang et al. [26] proposed a dynamic continuous factor graph
model to predict users’ emotion states. Tan et al. [21] proposed a noise tolerant
model for predicting user’s actions in online social networks. Tang et al. [23]
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Fig. 8. Case study

proposed a topical affinity propagation to quantify the social influence between
users. However, these works did not leverage location information, while we focus
on predicting geographic coincidences.

UserMobilityAnalysis. Quite a few works on user mobility analysis have been
conducted. Li et al. [17] designed a hierarchical-graph-based similarity measure-
ment for estimating user similarity based on their location history. Liu et al. [18]
proposed an approach to utilize information of mobile objects for the clustering
task. Qian et al. [20] explore co-location mining pattern with dynamic neighbor-
hood constraint. However, rather than analysis of user mobility, we focus on a
prediction problem. Cho et al. [6] develop a Gaussianmodel by incorporating peri-
odicity and influence of social network structure to predict human location tracks.
Crandall et al. [7] studies geographic coincidences between users to infer social ties,
while our work focus on prediction of geographic coincidences from social network.
Zheng et al. [27] used a graph-based algorithm to infer user mobility based on GPS
data. Tang et al. [25] developed a general learning framework for inferring the types
of social ties in social networks; and [22] further extended the problem across het-
erogeneous networks. But none of these works provide an approach for prediction
of interpersonal geographic coincidences.

Physical Proximity Analysis. Physical proximity has been employed in many
works to quantify users’ behaviors. Eagle et al. [8] use GPS on mobile phones to
analyze proximity of the users in order to present the properties of users’ location
tracks. However, different from tracking users’ mobility, we aim to predict geo-
graphic coincidences between users in this work. There is also a host of conference
proximity analysis in current literature. Isella et al. [13] use RFID badges to col-
lect face-to-face proximity data of individuals at a scientific conference, and ana-
lyze its static and dynamic properties. Atzmueller et al. [1] explore different roles of
participants in a conference by examining their face-to-face interaction patterns.
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Similarly, Cattuto et al. [4] collect data from the office environment and academic
congress.

7 Conclusion

In this paper, we formally define the ephemeral social network and study to which
extent we can predict geographic coincidences in an ephemeral social network.
We conduct a series of observations on an ephemeral social network extracted
from a data collected during an academic conference (UbiComp 2011). Based
on link homophily, opinion leader and structural hole, we show the interplay be-
tween the normal social network (coauthor network) and users’ behavioral pat-
tern in the ephemeral social network. We then propose a Factor Graph Model
(FGM) for the prediction task. Experimental results show that our model out-
performs the baseline on two data sets: UbiComp and Reality. Further analysis
also suggests that social correlation factors help improve the performance.

A limitation of this work is that a geographic coincidence does not necessarily
indicate an actual social interaction, e.g. conversation or discussion. We carefully
select the parameters so that extracted geographic coincidence are very likely to be
accompanied with actual social interaction, but the real situation is hard to detect
without collecting additional context. Another flaw is the requirement of labeled
data since we use supervised learning for our model. An unsupervised learning ap-
proach would further reduce the cost of geographic coincidences prediction.

References

1. Atzmueller, M., Doerfel, S., Hotho, A., Mitzlaff, F., Stumme, G.: Face-to-face
contacts during a conference: Communities, roles, and key players. In: Workshop
MUSE at ECML/PKDD (2011)

2. Booth, A.: Personal influence networks and participation in professional association
activities. The Public Opinion Quarterly 33(4), 611–614 (1969)

3. Burt, R.S.: Structural holes: The social structure of competition. Harvard Univer-
sity Press, Cambridge (1992)

4. Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J.-F., Vespig-
nani, A.: Dynamics of person-to-person interactions from distributed rfid sensor
networks. PLoS ONE 5(7), e11596 (2010)

5. Chin, A., Xu, B., Yin, F., Wang, X., Wang, W., Fan, X., Hong, D., Wang, Y.:
Using proximity and homophily to connect conference attendees in a mobile social
network. Accepted to the 2nd International Workshop on Sensing, Networking and
Computing with Smartphones, pp. 1–9. IEEE Computer Society (2012)

6. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: KDD, pp. 1082–1090 (2011)

7. Crandall, D., Backstrom, L., Cosley, D., Suri, S., Huttenlocher, D., Kleinberg, J.:
Inferring social ties from geographic coincidences. PNAS 107(52), 22436 (2010)

8. Eagle, N., Pentland, A.: Social serendipity: Mobilizing social software. IEEE Per-
vasive Computing 4(2), 28–34 (2005)

9. Eagle, N., Pentland, A., Lazer, D.: Inferring friendship network structure by using
mobile phone data. PNAS 106(36), 15274 (2009)



628 H. Zhuang et al.

10. Easley, D.A., Kleinberg, J.M.: Networks, Crowds, and Markets - Reasoning About
a Highly Connected World. Cambridge University Press (2010)

11. Hall, E.T.: A system for the notation of proxemic behaviour. American Anthro-
pologist 65, 1003–1026 (1963)

12. Hammersley, J.M., Clifford, P.: Markov field on finite graphs and lattices (1971)
(unpublished manuscript)

13. Isella, L., Barrat, J.S.A., Cattuto, C., Pinton, J.-F., den Broeck, W.V.: What’s
in a crowd? analysis of face-to-face behavioural networks. Journal of Theoretical
Biology, 166–180 (2010)

14. Katz, E.: The two-step flow of communication: An up-to-date report on an hy-
pothesis. The Public Opinion Quarterly 21(1), 61–78 (1957)

15. Lafferty, J.D.,McCallum, A., Pereira, F.C.N.: Conditional randomfields: Probabilis-
tic models for segmenting and labeling sequence data. In: ICML, pp. 282–289 (2001)

16. Lazarsfeld, P.F., Berelson, B., Gaudet, H.: The People’s Choice. How the Voter
Makes up his Mind in Presidential Campaign. Columbia University Press, New
York (1944)

17. Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.: Mining user similarity based
on location history. In: Workshop on Advances in Geographic Information Systems
(2008)

18. Liu, S., Liu, Y., Ni, L.M., Fan, J., Li, M.: Towards mobility-based clustering. In:
KDD, pp. 919–928 (2010)

19. Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P.: Landmarc: indoor location sensing using
active rfid. Wireless Networks 10, 701–710 (2004)

20. Qian, F., He, Q., He, J.: Mining Spatial Co-location Patterns with Dynamic Neigh-
borhood Constraint. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor,
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