
Rax: Composable Learning-to-Rank using JAX
Rolf Jagerman
Google Research

jagerman@google.com

Xuanhui Wang
Google Research

xuanhui@google.com

Honglei Zhuang
Google Research
hlz@google.com

Zhen Qin
Google Research

zhenqin@google.com

Michael Bendersky
Google Research

bemike@google.com

Marc Najork
Google Research

najork@google.com

ABSTRACT

Rax is a library for composable Learning-to-Rank (LTR) written
entirely in JAX. The goal of Rax is to facilitate easy prototyping
of LTR systems by leveraging the flexibility and simplicity of JAX.
Rax provides a diverse set of popular ranking metrics and losses
that integrate well with the rest of the JAX ecosystem. Furthermore,
Rax implements a system of ranking-specific function transforma-
tions which allows fine-grained customization of ranking losses
and metrics. Most notably Rax provides approx_t12n: a function
transformation (t12n) that can transform any of our rankingmetrics
into an approximate and differentiable form that can be optimized.
This provides a systematic way to directly optimize neural ranking
models for ranking metrics that are not easily optimizable in other
libraries. We empirically demonstrate the effectiveness of Rax by
benchmarking neural models implemented using Flax and trained
using Rax on two popular LTR benchmarks:WEB30K and Istella.
Furthermore, we show that integrating ranking losses with T5, a
large language model, can improve overall ranking performance
on the MS MARCO passage ranking task. We are sharing the Rax
library with the open source community as part of the larger JAX
ecosystem at https://github.com/google/rax.

CCS CONCEPTS

• Information systems→ Learning to rank.

KEYWORDS

Learning to Rank; JAX
ACM Reference Format:

Rolf Jagerman, Xuanhui Wang, Honglei Zhuang, Zhen Qin, Michael Bender-
sky, and Marc Najork. 2022. Rax: Composable Learning-to-Rank using JAX.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’22), August 14–18, 2022, Washington, DC, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3534678.3539065

1 INTRODUCTION

Learning-to-Rank (LTR) concerns itself with learning a ranking
model or ranker from labeled relevance data or interaction logs.
Unlike traditional classification or regression problems, where the
goal is to predict a label or value for each individual item, ranking

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9385-0/22/08.
https://doi.org/10.1145/3534678.3539065

problems aim to predict an ordering on a list of items in order to
maximize the utility of that list. Ranking models are widely appli-
cable and actively used in Web search, recommendation systems,
question answering systems, and more. Due to the applicability of
ranking models to many different domains, several open-source
LTR libraries have been developed, including TF-Ranking [33] and
XGBoost [9]. Although the current offering of ranking libraries is
impressive, none of them function natively within JAX [4], a new
numerical computing framework that is rapidly gaining popularity.

JAX provides tools for automatic differentiation, compilation to
accelerators, and batching in the form of function transformations
that compose [4]. Unlike Tensorflow [1] or PyTorch [34] which
focus mostly on deep learning, JAX is a library for arbitrary differ-
entiable programming. JAX makes it possible to express complex
machine learning systems that leverage accelerators, while being
written entirely in Python. Due to its ease-of-use, JAX has been
used in computer vision [11], physics [41], differential privacy [43],
reinforcement learning [3] and other fields of machine learning.

However, adoption of JAX in the Information Retrieval (IR) and
Learning-to-Rank (LTR) communities is non-existent, as there is
currently no library that provides ranking capabilities to the JAX
ecosystem. This motivated us to build Rax to bridge this gap. How-
ever, implementing ranking functionality in JAX is challenging for a
number of reasons. First, to be compatible with the JAX ecosystem,
any ranking functionality in JAX needs to uphold the Pure and Stati-
cally Composed (PSC) function requirement of JAX (see Section 3.2).
Second, implementing rankingmetric optimization, a key technique
for LTR, in a systematic way is not trivial. Existing LTR offerings
implement approximate metrics as entirely separate loss implemen-
tations, which has a very loose connection between the metrics
and the losses. It thus easily leads to code duplication and does not
scale to newmetrics. Finally, how to enable stochastic estimation [5,
45, 48] for all of the ranking losses in a systematic way, without
introducing duplicated code, is desired but not immediately clear.

To overcome these challenges, this paper introduces Rax1, the
first ranking library in the JAX ecosystem. Rax provides three main
components that make ranking functionality feasible in the JAX
ecosystem: (1) ranking losses, (2) ranking metrics, and, (3) function
transformations. First, the ranking losses provide implementations
of standard ranking losses. Each ranking loss is implemented ac-
cording to a consistent function signature which allows users of
Rax to easily switch among different losses in the same code base.
Second, the ranking metrics provide implementations of standard
ranking metrics, which are highly configurable. For example, our

1Rax is available at https://github.com/google/rax

https://github.com/google/rax
https://doi.org/10.1145/3534678.3539065
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539065
https://github.com/google/rax

KDD ’22, August 14–18, 2022, Washington, DC, USA Rolf Jagerman et al.

implementation of the NDCG metric [24] accepts customized gain
and discount functions, which makes them re-usable in different
contexts. Lastly, the function transformations provide a system-
atic way to support ranking metric optimization. One example is
rax.approx_t12n which can transform any of our ranking metrics
into an approximate form that can be optimized using gradient
descent. Another example is rax.gumbel_t12n which transforms
any of our ranking losses into stochastic versions via Gumbel sam-
pling [5]. Each of the components of Rax is implemented using a
functionally pure design, which makes them compatible with JAX
and many libraries in the JAX ecosystem. Furthermore, Rax pro-
vides a number of examples that help users get started, including
examples on how to use Rax to build ranking models with Flax [20]
and Optax [22].

We validate the effectiveness of our new library Rax by run-
ning LTR benchmarks on both the WEB30K [36] and Istella [10]
datasets. We experiment with a large number of ranking losses that
are provided by Rax. Our results suggest constructing new rank-
ing losses by lower bounding or approximating ranking metrics, a
functionality made possible by Rax function transformations, can
provide significantly better ranking models. Furthermore, we inte-
grate several of the ranking losses offered by Rax with T5X, a JAX
implementation of the T5 [39] model and test them by finetuning
a T5 model on the MS MARCO [30] passage ranking dataset. We
find that by fine-tuning on listwise ranking losses we can obtain
significantly better results on this task than what we could obtain
with just pointwise or pairwise losses.

2 RELATEDWORK

Learning-to-Rank (LTR) is a widely studied area of Information
Retrieval (IR). There are numerous algorithms, models and rank-
ing losses and metrics that are relevant to both researchers and
practicioners of LTR systems. Because of this, a large number of
libraries exist that provide LTR functionality. Notable libraries in-
clude TF-Ranking2 [33], XGBoost3 [9], SVM-Rank4 [25], sofia-ml5,
RankLib6, QuickRank7 [8], RankPy8, PyLTR9, jforest10 [16], and,
PyTorchLTR11 [23], to name a few.

Out of these libraries, TF-Ranking [33] and XGBoost [9] are
the most widely used open source software solutions for LTR. TF-
Ranking is a "scalable learning-to-rank library in TensorFlow". The
focus of TF-Ranking is on training neural ranking models on large-
scale problems with hundreds of millions of training examples.
Similarly, XGBoost is a scalable machine learning designed for tree
boosting algorithms that can be applied to regression, classification
and ranking. Both libraries focus strongly on scalability and provide
strong ranking performance across existing benchmarks.

Rax is similar to these libraries in the fact that they all provide
standard implementations of ranking losses and ranking metrics.

2https://github.com/tensorflow/ranking
3https://github.com/dmlc/xgboost
4https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
5https://code.google.com/archive/p/sofia-ml/
6https://sourceforge.net/p/lemur/wiki/RankLib/
7http://quickrank.isti.cnr.it/
8https://bitbucket.org/tunystom/rankpy/src/master/
9https://github.com/jma127/pyltr
10https://github.com/yasserg/jforests
11https://github.com/rjagerman/pytorchltr

However, as in the JAX ecosystem, Rax differentiates itself by
placing emphasis on usability instead of scalability. One way Rax
does this is by providing novel ways of re-purposing ranking met-
ric implementations as ranking losses, which allows new ways of
performing ranking metric optimization that was not easily accom-
plished in libraries such as TF-Ranking. Our design strictly consists
of PSC functions (which will be expanded upon in Section 3.2).
This design decision allows us to leverage the powerful machin-
ery of JAX to both accelerate computation to GPU/TPU devices
(via jax.jit) and scale computation to multi-device clusters (via
jax.pmap). Furthermore, by focusing on ranking losses and metrics,
Rax does not tie itself to any specific choice of model. This means
that Rax could be used for both neural and tree algorithms as long
as there are JAX libraries to support those models. At the time of
writing, there are no libraries offering tree boosting functionality
in JAX but there are numerous neural network libraries such as
Flax [20] and Haiku [3]. This makes it possible to use Rax to train
neural LTR models.

3 BACKGROUND

Before we describe the design of Rax, we first provide background
on Learning-to-Rank (LTR) and JAX. Furthermore, this section
establishes notation that will be used throughout this paper.

3.1 Learning-to-Rank

In this section, we will introduce the general problem of Learning-
to-Rank (LTR) and our notation. Let X denote the universe of all
possible items and 𝑥 ⊂ X be a subset of 𝑛 candidate items that
we wish to rank. For example, in the case of ad-hoc retrieval we
wish to rank a set of 𝑛 candidate documents in response to a query,
and in this setting each 𝑥𝑖 ∈ 𝑥 represents a (query, document)
pair. Similarly, for personalized recommendation, each 𝑥𝑖 ∈ 𝑥 could
represent a (user, item) pair when recommending a set of𝑛 items to a
specific user. Furthermore let 𝜋 be a total ordering of 𝑥 , represented
as a bijection of {1, 2, . . . , 𝑛} = [𝑛] onto itself. The set of all possible
𝑛-sized total orderings, also called the symmetric group, is denoted
as 𝑆𝑛 = {𝜋 : [𝑛] → [𝑛] | 𝜋 bijective}. We will denote with 𝜋−1 the
inverse ordering such that 𝜋−1 (𝜋 (𝑖)) = 𝑖 . Let 𝑟 be a ranking function
that maps a set of candidate items 𝑥 ∈ X𝑛 to a total ordering 𝜋 ∈ 𝑆𝑛 :

𝑟 : X𝑛 → 𝑆𝑛 (1)

Now, suppose there is a ground truth ordering 𝜋∗ ∈ Π𝑛 for any
subset of items 𝑥 . Broadly speaking, the objective of LTR is to find
a ranking function 𝑟 that recovers the ground truth ordering 𝜋∗.

Because the set of permutations 𝑆𝑛 is exponentially large, finding
such a function 𝑟 is a difficult problem to solve in general. In practice,
instead of assuming a single optimal ordering 𝜋∗, it is common to
assume there is a set of many optimal orderings 𝑆∗𝑛 ⊆ 𝑆𝑛 [12]. These
orderings are induced from relevance labels: real-valued labels that
indicate the relevance of each item in 𝑥 . We denote such relevance
labels as 𝑦 ∈ R𝑛 and write 𝑆∗𝑛 = 𝑆

𝑦
𝑛 as the set of optimal orderings

induced by 𝑦:

𝑆
𝑦
𝑛 = {𝜋 ∈ 𝑆𝑛 | 𝑦𝜋 (𝑖) ≥ 𝑦𝜋 (𝑗)∀𝑖 < 𝑗} (2)

Furthermore, it is common practice to assume a score-and-sort
approach. This means that, instead of finding a ranking function 𝑟 ,

https://github.com/tensorflow/ranking
https://github.com/dmlc/xgboost
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
https://code.google.com/archive/p/sofia-ml/
https://sourceforge.net/p/lemur/wiki/RankLib/
http://quickrank.isti.cnr.it/
https://bitbucket.org/tunystom/rankpy/src/master/
https://github.com/jma127/pyltr
https://github.com/yasserg/jforests
https://github.com/rjagerman/pytorchltr

Rax: Composable Learning-to-Rank using JAX KDD ’22, August 14–18, 2022, Washington, DC, USA

we are content with finding a scoring function 𝑓 that maps a set of
candidate items 𝑥 to real-valued scores:

𝑓 : X𝑛 → R𝑛 (3)

The scores 𝑠 = 𝑓 (𝑥) can then be used to induce a total ordering 𝜋
by sorting them. To this end, we define rank(𝑠𝑖 | 𝑠) as the function
that computes the 1-based rank of the 𝑖th score 𝑠𝑖 after sorting the
scores 𝑠 in descending order:

rank(𝑠𝑖 | 𝑠) ∈
{
𝜋−1 (𝑖) | 𝜋 ∈ 𝑆𝑠𝑛

}
(4)

where 𝑆𝑠𝑛 is defined similarly to 𝑆𝑦𝑛 in Equation 2 with the difference
that 𝜋 is induced by scores 𝑠 instead of labels 𝑦. In practice, 𝑓 is
often a parameterized function 𝑓𝜃 for which we wish to find the
parameters 𝜃 . For example, 𝑓𝜃 could be a neural network where 𝜃
are the weights of the network. At this point, it is worth noting
that an item 𝑥𝑖 ∈ X is typically a representation of an item in some
𝑑-dimensional feature space. In other words 𝑥𝑖 ∈ R𝑑 and 𝑥 ∈ R𝑛×𝑑 .

Given a set of items 𝑥 and corresponding relevance labels 𝑦, it is
now possible to define the risk (or reversely, the utility) of a scoring
function 𝑓𝜃 by considering a ranking loss function ℓ :

ℓ : R𝑛 ×R𝑛 → R (5)

Such a loss function expresses how well the ranking induced by the
item scores 𝑓𝜃 (𝑥) matches the ranking induced by the relevance
labels 𝑦. With this in mind, LTR becomes a supervised learning
problem where items and labels are sets and we wish to find a
scoring function 𝑓𝜃 that minimizes empirical risk on a dataset D:

Risk(𝑓𝜃) =
1

| D |
∑

(𝑥,𝑦) ∈D
ℓ (𝑓𝜃 (𝑥), 𝑦) (6)

where D is defined as:

D ⊆
{
(𝑥,𝑦) | (𝑥,𝑦) ∈ X𝑛 × R𝑛

}
(7)

Depending on the specific ℓ and 𝑓𝜃 , this formulation permits
optimization via gradient descent and many existing LTR algo-
rithms minimize this empirical risk estimate. In practical appli-
cations where D is large, a common learning strategy is that of
Stochastic Gradient Descent (SGD). In SGD, the learner samples a
batch of elements B ⊂ D at each learning step and performs a gra-
dient descent update on the sampled elements. The effectiveness of
SGD in optimizing the empirical risk for LTR is widely documented
in the literature [2, 6, 7, 25, 38, 42, 47]. As the focus of this paper is
on a new library for LTR, we will focus mostly on ranking losses
and metrics. As a result we will not go into detail about different
possible LTR learning strategies and simply assume we wish to
optimize a neural network 𝑓𝜃 via standard SGD.

3.2 JAX

JAX is an "extensible system for function transformations that com-
pose: differentiation, vectorization, JIT-compilation to GPU/TPU,
and more" [4]. JAX can transform python functions using various
transformations such as:

• jax.grad: Differentiates a function with respect to its inputs.
• jax.vmap: Vectorizes a function by mapping it across a batch
dimension of its inputs.

• jax.jit: Compiles a function using Accelerated Linear Algebra
(XLA).

To enable these transformations, JAX is designed to operate only
on Pure and Statically Composed (PSC) functions. PSC functions
are functions that satisfy the following two requirements [15]:

• Functionally pure: the function does not read/write global state
and is deterministic so that it always produces the same output
given the same inputs.

• Statically-composed (relative to a set of primitive functions):
the function should be representable as a static data depen-
dency graph on a set of primitives (addition, multiplication,
XLA operators, etc.).

Although the PSC requirement restricts the class of python func-
tions that can be transformed with JAX, it turns out that many
machine learning systems can be implemented in this paradigm.
For example, a single training step of a neural network can be en-
tirely written as a PSC function. This makes it possible to use JAX
to accelerate the compute-dominated parts of the machine learning
workload using XLA, while still allowing the dynamism of Python
to orchestrate the overall logic of the entire system.

The design of JAX has proven to be a powerful framework for
implementing machine learning systems. For example, JAX was
found to be consistently faster than alternatives for differential
privacy applications [43]. Furthermore, JAX has demonstrated state-
of-the-art results on the MLPerf benchmark [27], in several cases
outperforming other frameworks such as Tensorflow.

JAX provides the building blocks needed to build machine learn-
ing systems in the form of function transformations. However, it
does not provide out-of-the-box libraries that address the needs of
researchers. Because of this a large ecosystem of well-tested and
actively developed JAX libraries has emerged. Several libraries offer
implementations of neural networks, most notably Flax [20] and
Haiku [21]. Other libraries provide optimizers that can be used to
optimize parameterized functions, for example Optax [22]. More-
over several libraries for specialized domains of machine learning
exist: for example RLax [3] for reinforcement learning, PIX [3] for
image processing, Scenic [11] for computer vision, and, JRaph [17]
for graph neural networks. Since most of these libraries can inter
operate, for example one could use an optimizer from Optax to
optimize the parameters of a neural network designed with Flax, it
is common practice for researchers to pick and choose a subset of
libraries to fulfill their research needs.

By and large, the JAX ecosystem seems to follow a Unix-like
philosophy [29] of developing libraries that do a single thing well
and that can easily inter operate with each other. This stands in
contrast with monolithic frameworks, such as TensorFlow [1] and
PyTorch [34], which combine all of this functionality in a single
library. To prevent re-inventing the wheel and to match this de-
sign philosophy, our library Rax focuses solely on serving the
ranking-specific needs of researchers. As such, Rax does not pro-
vide modeling functionality, optimizers or data pipelines as those
are better served by other libraries in the JAX ecosystem. Instead,
Rax specifically provides ranking losses, ranking metrics and a set
of novel function transformations that allow direct ranking metric
optimization. Rax follows the JAX convention of strictly using PSC
functions. This allows Rax to inter operate with nearly all libraries
in the JAX ecosystem.

KDD ’22, August 14–18, 2022, Washington, DC, USA Rolf Jagerman et al.

TFDS dataset

features 𝑥 labels 𝑦model params 𝜃

flax.linen.Module

scores 𝑓𝜃 (𝑥) rax.*_loss

jax.grad

optax.GradientTransformation

jax.jit

new model params 𝜃

Figure 1: A single training step as a composition of functions

from different libraries in the JAX ecosystem. Yellow nodes

indicate core JAX functionality, blue nodes indicate other

JAX libraries and the red node is the Rax ranking loss. The

dotted line indicates the PSC function boundary.

4 DESIGN OF RAX

The design of Rax is broken down into three main components:
ranking losses, ranking metrics and function transformations. The
API of Rax is a flat collection of functions where the naming con-
vention indicates the type of function:

• rax.*_loss: Losses such as rax.pairwise_hinge_loss.
• rax.*_metric: Metrics such as rax.ndcg_metric.
• rax.*_t12n: Transformations such as rax.approx_t12n.
An overview of how Rax interacts with JAX and other libraries

in the JAX ecosystem is illustrated in Figure 1. This figure displays
how functions from different libraries are composed into a single
training step of a neural network. At the center of this composition
is the Rax training loss that we wish to optimize. Notice how the
entire training step function (as outlined in the dotted line) is repre-
sented as a single PSC function that is compiled using jax.jit. The
resulting training step benefits from optimizations offered by the
XLA compiler including fusion of many different parts of the train-
ing step. This means the training step, written entirely in Python,
is capable of efficiently running on an accelerated device such as
a TPU or GPU without any extra implementation effort. A more
complete code example that demonstrates how Rax can be used to
train a ranking model is provided in Appendix A.

4.1 A Unified Ranking Loss Design

As introduced in Section 3.1, ranking losses are functions that
express, for a given set of candidate items, how well the ranking
induced by the predicted item scores 𝑠 = 𝑓𝜃 (𝑥) match the ranking
induced by the corresponding relevance labels 𝑦. Ranking losses
are commonly categorized into three categories: pointwise losses,
pairwise losses and listwise losses [28]. The loss function signature
across these three categories are different because each loss function
operates at a different level of abstraction: pointwise losses are

defined on a single item 𝑥𝑖 , pairwise losses on a pair of items
(𝑥𝑖 , 𝑥 𝑗), and, listwise losses on a list of items [𝑥1, 𝑥2, . . . , 𝑥𝑛]:

ℓpointwise : R×R→ R (8a)

ℓpairwise : R2 ×R2 → R (8b)
ℓ listwise : R𝑛 ×R𝑛 → R (8c)

The fact that these loss function signatures are different is problem-
atic from an engineering perspective. Users would have to carefully
craft their input to match the chosen loss function. As a result,
users would not be able to easily change to a different ranking loss
without changing the call signature.

To resolve this problem,Rax implements the ranking losses using
a unified design that encodes all three categories of ranking losses.
To do so, Rax adopts the most general formulation, the listwise
ranking loss, as the unified ranking loss signature. We can express
the pointwise and pairwise losses using this unified signature by
changing the output of the loss to be a tensor instead of a scalar.
This leads to the following function signatures:

ℓpointwise : R𝑛 ×R𝑛 → R𝑛 (9a)

ℓpairwise : R𝑛 ×R𝑛 → R𝑛
2

(9b)
ℓ listwise : R𝑛 ×R𝑛 → R (9c)

A different perspective on this is that, given a list of items 𝑥 and
relevance labels 𝑦, the pointwise losses treat such a list as a batch
of 𝑛 samples, the pairwise losses treat it as a batch of (at most) 𝑛2
samples and the listwise losses treat it as a single sample. So far,
we have assumed the ranking loss is applied to a single list, but in
practice it is more common to compute such losses on a batch B
containing 𝑏 = |B| lists. This changes the signature of the losses to:

ℓpointwise : R𝑏×𝑛 ×R𝑏×𝑛 → R𝑏×𝑛 (10a)

ℓpairwise : R𝑏×𝑛 ×R𝑏×𝑛 → R𝑏×𝑛
2

(10b)

ℓ listwise : R𝑏×𝑛 ×R𝑏×𝑛 → R𝑏 (10c)

We note that this formulation of the losses is not immediately useful
for optimization. The output of each loss needs to be reduced to a
scalar value in order to use the loss for optimization.

4.1.1 Batch Reduction of Ranking Losses. Common strategies for
reducing a batch of losses to a scalar value include mean reduction
and sum reduction. More generally we can denote with𝐴 : R𝑑 → R
the space of all possible aggregation functions. For example sum-
reduction 𝑎sum ∈ 𝐴 can be defined as follows:

𝑎sum (𝑧) =
∑
𝑧𝑖 ∈𝑧

𝑧𝑖 (11)

With this formulation, the losses can be reduced to a scalar value by
expressing them as a composition of ℓ with an aggregation function
𝑎 ∈ 𝐴. For example:

ℓ = ℓpointwise ◦𝑎 (12)

More generally, we can now write any ranking loss with the fol-
lowing unified signature:

ℓ : R𝑏×𝑛 × R𝑏×𝑛 × 𝐴 → R . (13)

Rax: Composable Learning-to-Rank using JAX KDD ’22, August 14–18, 2022, Washington, DC, USA

Example usage12 of several Rax ranking losses, including the point-
wise MSE loss [28], pairwise hinge loss [28] and Softmax loss [33]
are shown in Listing 1.

Listing 1: Pointwise, pairwise and listwise ranking losses.

1 rax.pointwise_mse_loss(s, y)
2 rax.pairwise_hinge_loss(s, y, reduce_fn=jax.numpy.sum)
3 rax.softmax_loss(s, y, reduce_fn=jax.numpy.mean)

It is worth noting that this design of ranking losses in Rax is
a form of inversion of control [14]. The ranking loss gives the
user control over the desired reduction behavior by allowing them
to inject a custom reduce_fn. This is different than libraries such
as TensorFlow or PyTorch, where one would have to supply a
configuration constant that indicates the type of loss reduction.
Such configuration constants can make it difficult to customize
the reduction behavior to more advanced use-cases. By accepting
a reduce_fn keyword argument in Rax, users have full control
over the desired reduction behavior. Note that this does not make
typical reduction scenarios such as sum ormean reduction anymore
complicated, as one can simply pass in standard JAX functions such
as jax.numpy.sum or jax.numpy.mean.

4.1.2 Distributed Reduction of Ranking Losses. A major benefit of
the approach described so far is that it enables more advanced cases
where custom reduction logic is needed. For example, in distributed
machine learning, it may be necessary to reduce loss values across
devices before performing a parameter update step. Since JAX pro-
vides several parallel computing primitives, it becomes extremely
easy to use a Rax loss in a distributed learning setting. An example
of a distributed sum aggregation is provided in Listing 2.

Listing 2: Distributed loss reduction in Rax. This assumes

there is a named batch axis called “device”

1 def psum(a, where):
2 if where is not None:
3 a = jax.numpy.where(where, a, 0.)
4 return jax.lax.psum(a, axis_name="device")
5

6 rax.pairwise_hinge_loss(scores, labels, reduce_fn=psum)

Note that this code is significantly simpler compared to parallel
training primitives that exist in other frameworks such as Tensor-
Flow or PyTorch. The design of JAX, and by proxy the design of
the ranking losses in Rax, obviates the need for strategy scopes,
custom distributed optimizers and other complex abstractions be-
cause the parallel primitives are transparent to the user and can be
customized effortlessly.

Finally, all the ranking losses are implemented as PSC functions.
This makes computing the gradient of a loss a trivial application of
a jax.grad transformation as shown in Listing 3.

Listing 3: Computing the gradient of a ranking loss.

1 grad_fn = jax.grad(rax.pairwise_hinge_loss)
2 grad_fn(scores, labels)

12In the actual implementation of Rax the loss also accepts an optional boolean tensor
called where. This is needed to model batches with a ragged structure via padding.

4.2 Ranking Metrics

Ranking metrics are an important component for evaluating IR
systems. There are a number of standard ranking metrics that are
commonly used in practice to measure how well a ranker performs
on a particular task. Most ranking metrics are designed to reward
correctness at the top of the ranked list more than at the bottom.
Recall that rank(𝑠𝑖 | 𝑠) indicates the rank of the 𝑖th score 𝑠𝑖 after
sorting the scores 𝑠 in descending order. We can use this to define
several common ranking metrics via aggregation over the ranks,
for example:

DCG(𝑠,𝑦) =
𝑛∑
𝑖=1

gain(𝑦𝑖)
discount(rank(𝑠𝑖 | 𝑠))

(14)

NDCG(𝑠,𝑦) = DCG(𝑠,𝑦)/DCG(𝑦,𝑦) (15)

where gain(·) and discount(·) are functions that map relevance
labels to gains and ranks to discounts respectively. Common choices
are gain(𝑦𝑖) = 2𝑦𝑖 − 1 and discount(𝑟) = log2 (𝑟 + 1). Furthermore,
somemetrics accept a cutoff value 𝑘 that indicates the rank at which
results are cut off. We denote such a cutoff function as follows:

cutoff(𝑠𝑖 | 𝑠, 𝑘) = 𝟙[rank(𝑠𝑖 | 𝑠) ≤ 𝑘] (16)

In other words cutoff(𝑠𝑖 | 𝑠, 𝑘) is 1 if the 𝑖th score is one of the 𝑘
largest scores of 𝑠 , and 0 otherwise. Some examples of cutoff-based
ranking metrics are:

NDCG@𝑘 (𝑠,𝑦) = 1
𝐷𝐶𝐺@𝑘 (𝑦,𝑦)

𝑛∑
𝑖=1

cutoff(𝑠𝑖 | 𝑠, 𝑘) · gain(𝑦𝑖)
discount(rank(𝑠𝑖 | 𝑠)

(17)

Recall@𝑘 (𝑠,𝑦) =
∑𝑛
𝑖=1 cutoff(𝑠𝑖 | 𝑠, 𝑘) 𝟙[𝑦𝑖 > 0]∑𝑛

𝑖=1 𝟙[𝑦𝑖 > 0] (18)

Prec@𝑘 (𝑠,𝑦) =
∑𝑛
𝑖=1 cutoff(𝑠𝑖 | 𝑠, 𝑘) 𝟙[𝑦𝑖 > 0]∑𝑛

𝑖=1 cutoff(𝑠𝑖 | 𝑠, 𝑘)
(19)

AP(𝑠,𝑦) =
∑𝑛
𝑖=1 𝑃𝑟𝑒𝑐@rank(𝑠𝑖 | 𝑠) (𝑠,𝑦) · 𝟙[𝑦𝑖 > 0]∑𝑛

𝑖=1 𝟙[𝑦𝑖 > 0] (20)

Rax provides implementations for a number of standard ranking
metrics. The function signature of a ranking metric function 𝑚
largely follows the same signature as that of the loss functions:

m : R𝑏×𝑛 × R𝑏×𝑛 × 𝐴 → R . (21)

An example is given in Listing 4. Note how the keyword argument
topn=20 is used for some metrics to indicate the cutoff rank 𝑘 .

Listing 4: Example ranking metrics in Rax.

1 rax.ndcg_metric(s, y)
2 rax.mrr_metric(s, y)
3 rax.precision_metric(s, y, topn=20)
4 rax.recall_metric(s, y, topn=20)

A key distinction that sets ranking metrics apart from ranking
losses is their resistance to direct optimization. All ranking metrics
are rank-based, meaning they need to compute rank(𝑠𝑖 | 𝑠) to ob-
tain 1-based ranks. Although the gradient of the rank operation is
well-defined, it is fairly useless as it is zero everywhere. As a result,
direct optimization of ranking metrics is considered a difficult prob-
lem. In the next section, we will describe how the ranking metric

KDD ’22, August 14–18, 2022, Washington, DC, USA Rolf Jagerman et al.

implementations in Rax can be transformed to allow approximate
metric optimization.

4.3 Differentiable Metrics via Function

Transformations

As described in Section 4.2, ranking metrics are difficult to optimize
due to the rank operation introducing zero-gradients. Existing work
has looked at finding approximations of ranks that have a useful
non-zero gradients. Examples of methods utilizing this approach
are SoftRank [44], SmoothDCG [46], ApproxNDCG [37] and Neural-
Sort [18, 35]. The general idea is that the rank function rank(𝑠𝑖 | 𝑠)
can be replaced with an approximation that has non-zero gradients.
ApproxNDCG [37] constructs such an approximation by writing
the rank function as a sum of indicator functions and then replacing
the indicator with a sigmoid:

rank(𝑠𝑖 | 𝑠) = 1 +
∑
𝑗≠𝑖

𝟙[𝑠 𝑗 > 𝑠𝑖] (22a)

≈ 1 +
∑
𝑗≠𝑖

sigmoid(𝑠 𝑗 − 𝑠𝑖) = rank(𝑠𝑖 | 𝑠) (22b)

Existing libraries such as TF-Ranking have offered such approxi-
mations as separate ranking loss implementations. However, there
are two problems with this approach: First, it is not easy to extend
the general idea of approximate metric optimization to other rank-
ing metrics without having to write entirely new implementations.
Second, the existing work on approximate metric optimization has
mostly focussed on approximating metrics such as NDCG, but has
neglected work on metrics that necessarily require a cutoff value
such as NDCG@k or Recall@k.

4.3.1 Approximate Metrics. In Rax we solve both issues simulta-
neously by allowing users to provide their own rank and cutoff
functions. In effect, this allows users to replace both rank and cutoff
with differentiable approximations that can be optimized. The way
this is accomplished is by generalizing the function signature of
the metrics from their standard form to a more generic one:

m : R𝑏×𝑛 × R𝑏×𝑛 × 𝐴 × 𝑅 × 𝐶 → R . (23)

where 𝑅 is the space of all possible rank functions and𝐶 is the space
of all possible cutoff functions. In other words, users can freely in-
ject their own rank and cutoff functions to customize the ranking
metrics. For example, by supplying the approximate rank function
defined in Equation 22b we can obtain the standard ApproxNDCG
loss. Note that Rax provides a rax.approx_t12n transformation for
ease-of-use that automatically injects sigmoid-based approxima-
tions as demonstrated in Listing 5.

Listing 5: Transforming a rankingmetric to an approximate

differentiable loss.

1 loss = -rax.ndcg_metric(s, y, rank_fn=rax.approx_ranks)
2 # is equivalent to:
3 loss = rax.approx_t12n(rax.ndcg_metric)(s, y)

4.3.2 Approximations for Cutoff-based Metrics. In addition to sup-
porting custom rank functions, Rax metrics also accept custom
cutoff functions. For example, we can define an approximate cutoff

function as follows:

cutoff(𝑠𝑖 | 𝑠) = 𝟙[rank(𝑠𝑖 | 𝑠) ≤ 𝑘] (24a)

≈ sigmoid
(
rank(𝑠𝑖 | 𝑠) − 𝑘

)
= cutoff(𝑠𝑖 | 𝑠) (24b)

This can be used to construct approximations for cutoff-based met-
rics. Consider the definition of NDCG@k in Equation 17. By plug-
ging in an approximations for both cutoff and rank we obtain an
approximate version of this metric that has non-zero gradients:

ApproxNDCG@𝑘 (𝑠,𝑦) = 1
DCG@𝑘 (𝑦,𝑦)

𝑛∑
𝑖=1

cutoff(𝑠𝑖 | 𝑠, 𝑘) · gain(𝑦𝑖)
discount(rank(𝑠𝑖 | 𝑠)

(25)
The pluggable rank and cutoff functions make it possible to con-
struct approximate forms of our entire offering of ranking metrics.
In fact, any future metric that follows this same signature, can be
used for approximate metric optimization. This permits re-use of
all the ranking metrics in Rax in an optimization context.

4.3.3 Bounded Metrics. Another advantage of accepting custom
rank and cutoff functions in the Rax ranking metrics is that we
are not restricted to only sigmoid-based approximations. For exam-
ple, existing work [2] has has explored upper-bounding the ranks
instead of approximating them which in turn constructs a lower-
bound for some metrics. As long as the upper-bound on the ranks
is differentiable, this makes the lower-bound for the metric suitable
for optimization. A straightforward differentiable upper-bound on
the ranks is the hinge function:

𝑟𝑎𝑛𝑘 (𝑠𝑖 | 𝑠) = 1 +
∑
𝑗≠𝑖

𝟙[𝑠 𝑗 > 𝑠𝑖] ≤ 1 +
∑
𝑗≠𝑖

𝑚𝑎𝑥 (0, 1 + 𝑠 𝑗 − 𝑠𝑖) (26)

The design of Rax permits plugging such bounds directly into our
collection of ranking metrics, as demonstrated in Listing 6. Note
that, depending on the specific metric, in order to obtain a lower
bound on the metric, we need to either supply a lower or upper
bound for either the ranks or cutoff functions. For simplicity, Rax
offers a rax.bound_t12n function that supplies upper bounds for
ranks and lower bounds for cutoffs automatically.

Listing 6: Differentiable lower bound of NDCG.

1 upperbound_rank_fn = functools.partial(
2 rax.approx_ranks,
3 step_fn=lambda x: jax.nn.relu(1. + x))
4 loss = -rax.ndcg_metric(s, y, rank_fn=upperbound_rank_fn)
5 # is equivalent to:
6 loss = rax.bound_t12n(rax.ndcg_metric)(s, y)

4.3.4 Gumbel Sampling. Finally, recent work has shown that in
order to effectively optimize an approximate metric loss, it is im-
portant to perform Gumbel-sampling on the scores [5], which is a
form of stochastic estimation of the loss [48]. To support this, Rax
provides a function transformation called gumbel_t12n. This func-
tion transformation replicates the scores a number of times, and
adds gumbel noise to them. Such a transformation can be applied to
any ranking loss, including the losses for approximate or bounded
metrics. See Listing 7 for an example that combines the gumbel
transformation with an approximate metric transformation.

Rax: Composable Learning-to-Rank using JAX KDD ’22, August 14–18, 2022, Washington, DC, USA

Listing 7: Creating a GumbelApproxNDCG [5] loss as a com-

position of Gumbel and Approx transformations.

1 loss_fn = rax.gumbel_t12n(rax.approx_t12n(rax.ndcg_metric))
2 loss = loss_fn(s, y, key=jax.random.PRNGKey(0))

It is important to note here that this makes the loss stochastic, due
to the sampling of random gumbel noise. As such, the returned loss
function requires a new argument key which acts as the random
state on which the random operations such as gumbel noise are
based. To ensure the Rax functionality strictly adheres to the PSC
function requirements, a global random state is prohibited, which
means the random state needs to be passed as an argument. This
is fairly standard behavior for JAX functions, for example all the
functions in jax.random require a key argument.

Overall, the flexibility offered by Rax opens up new ways of
performing ranking metric optimization. For example, Rax makes
it possible to compute approximations and bounds for metrics that
are traditionally considered hard to optimize such as NDCG@𝐾
and Recall@𝐾 . All of this is accomplished without introducing code
duplication by carefully constructing a generic metric function sig-
nature and then transforming the functions using rax.approx_t12n,
rax.bound_t12n, and, rax.gumbel_t12n. Moreover, this approach scales
to future metric implementations as long as they adhere to the met-
ric function definition of Equation 23.

5 EXPERIMENTS

To validate the effectiveness of our library Rax we have conducted
several experiments on two large-scale LTR benchmark datasets
WEB30K [36] and Istella [10]. Furthermore we have performed ex-
periments for finetuning a passage ranking task onMSMARCO [30]
using a Rax ranking loss with T5X13: a JAX implementation of the
T5 [39] large model.

5.1 LTR Benchmarks

For the LTR benchmarks on theWEB30K and Istella datasets we use
a standard supervised LTR setup. Both datasets are comprised of
a collection of queries and corresponding documents to be ranked.
Each query-document pair is represented as a𝑑-dimensional feature
vector, where 𝑑 = 136 for WEB30K and 𝑑 = 220 for Istella. Further-
more, each query-document pair has a corresponding relevance
label 𝑦 ∈ {0, 1, 2, 3, 4}, where a higher value indicates a higher rel-
evance of the document. Since the Istella dataset has no validation
set we split the training set into 90% training and 10% validation
manually. ForWEB30K we use Fold 1 to conduct our experiments.

We train a neural network with the various ranking losses of-
fered by Rax. The network architecture, implemented in Flax [20]
and optimized with Optax [3], is a feedforward neural network
with hidden layers of size [1024, 512, 256], where ReLU activations,
batch normalization and dropout is used at each hidden layer. A
hyperparameter sweep is performed, where the best run is selected
by evaluating it on held-out validation data. For the losses that op-
timize a specific metric (e.g. ApproxAP, ApproxRecall@20, etc.) we
choose the best run in terms of the metric being optimized on the
validation set. For other losses we select the best run by its NDCG
on the validation set. For the optimizer we try both Adam [26]
13https://github.com/google-research/t5x

with a learning rate ∈ {0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03} and
Adagrad [13] with a learning rate ∈ {0.01, 0.03, 0.1, 0.3}. We tune
the batchnorm momentum ∈ {0.9, 0.99, 0.999} and, for the approx
losses, additionally tune the temperature parameter ∈ {1, 10, 100}
for the sigmoid function. Each network is trained for 100,000 steps
where each step uses a batch size of 128. The entire training proce-
dure runs on a TPU and a single training run finishes in less than 3
hours. We evaluate the ranking models using NDCG, NDCG@10,
Average Precision (AP) and Recall@20. For the AP and Recall@20
metrics we convert graded relevance to binary relevance by con-
sidering items with 𝑦 ∈ {0, 1, 2} as not relevant and items with
𝑦 ∈ {3, 4} as relevant.

5.2 MS MARCO Passage Ranking

We also conduct experiments on the MS MARCO passage ranking
dataset. The dataset contains a corpus of more than 8.8 million
passages and questions with binary labels on relevant passages.
The task is to rank the passages for each question based on their
relevance. There are more than 530,000 questions in the “train”
partition, and the evaluation is usually conducted on the “dev”
partition of around 6,800 questions.

In our experiments, we first use a dual-encoder retriever [31] to
retrieve the top-1000 passages for each question. Then we concate-
nate the question with each candidate passage in a similar setting
to [32] and feed the concatenated strings into a T5 [40] model. We
use the T5X implementation in JAX and initialize the model with
T5-large checkpoint. We fine-tune the T5 ranker with multiple
ranking losses implemented in Rax. Due to memory limitation, we
sample 36 passages from the retrieved passages of each question
as a list during fine-tuning. As a baseline, we also fine-tune the T5
ranker with the pointwise cross-entropy loss on a data set with a
balanced number of relevant and irrelevant question-passage pairs.

We evaluate the performance of our rankers on the “dev” par-
tition of the MS MARCO dataset. The inference is conducted on
all the retrieved passages and we use MRR@10 as the evaluation
metric which is common practice for this dataset.

6 RESULTS

6.1 LTR Benchmarks

First, let us look at the results for the WEB30K dataset as indicated
by the first 4 columns in Table 1. We note that, again, the Softmax
loss is a strong baseline but does not outperform all other losses.
On this dataset we find that ranking metric optimization has sev-
eral benefits. For example the Rax implementation of ApproxAP
strongly outperforms all other methods on the AP metric. Similarly,
the BoundRecall@20 achieves the highest Recall@20. Finally, we
find that NDCG and NDCG@10 are strongly correlated. As a re-
sult, methods that optimize for either one generally achieve a high
score on both metrics. We note that BoundNDCG@10, a novel loss
offered by Rax, achieves the highest NDCG on this dataset.

Second, we direct our attention to the Istella dataset as indicated
by the latter 4 columns in Table 1. We observe that the Rax imple-
mentation of Softmax is very strong on this dataset, and in fact it
outperforms the TF-Ranking implementation of Softmax on nearly
all metrics. We note that the TF-Ranking version of ApproxNDCG
performs strong on the NDCG metric. Upon further inspection

https://github.com/google-research/t5x

KDD ’22, August 14–18, 2022, Washington, DC, USA Rolf Jagerman et al.

Table 1: LTR benchmark results on the test split ofWEB30K and Istella. Bold numbers indicate the best result for each metric

and
▲
indicates significantly (𝑝 < 0.05, 𝑡-test with Benferronni correction) better performance than the TF-Ranking Softmax

baseline. All the Approx* and Bound* losses use Gumbel-sampling with 8 Gumbel samples.

WEB30K Istella
NDCG NDCG@10 AP Recall@20 NDCG NDCG@10 AP Recall@20

TF-Ranking Softmax 71.36 48.71 20.78 36.66 80.90 71.96 62.18 90.71
TF-Ranking ApproxNDCG 71.13 48.28 20.96 35.84 81.12 71.92 62.25 89.73

Rax Softmax 71.30 48.55 20.76 36.53 80.99 72.11 62.40 90.82

Rax Pointwise MSE 71.28 48.68 20.54 36.42 80.06 70.68 60.65 89.19
Rax Pairwise Logistic 70.53 47.45 18.53 34.88 80.39 71.15 61.19 90.59
Rax ApproxNDCG 71.08 48.14 20.29 35.10 79.88 70.06 60.33 88.70
Rax ApproxNDCG@10 71.31 48.57 20.53 35.29 79.91 70.21 60.46 88.88
Rax ApproxAP 68.89 44.18 21.38

▲ 36.70 79.56 69.67 60.27 88.29
Rax ApproxRecall@20 69.09 44.56 20.99 36.90 79.84 70.23 60.62 89.59
Rax BoundNDCG 70.96 47.96 20.42 35.02 80.69 71.30 61.67 89.01
Rax BoundNDCG@10 71.40 48.87 20.98 36.68 80.61 71.36 61.64 90.52
Rax BoundAP 69.20 44.51 20.79 35.41 79.83 70.02 60.77 87.80
Rax BoundRecall@20 68.16 42.98 21.02 36.80 78.72 68.59 58.99 88.93

Table 2: Performance of T5-large ranker on MS MARCO
trained with different ranking losses. The best performance

is bolded. The Rax ApproxNDCG@10 loss uses Gumbel-

sampling with 8 Gumbel samples.

Ranking loss Dev MRR@10

BERT TF-Ranking Ensemble [19] 42.13

T5-Large + Rax Pointwise Sigmoid 41.84
T5-Large + Rax Pairwise Logistic 41.79
T5-Large + Rax ApproxNDCG@10 41.62
T5-Large + Rax Softmax 42.74

of this loss we find that the Gumbel sampling procedure used in
TF-Ranking applies an extra log-softmax transformation on the sam-
pled scores, which the Rax version does not do and may explain the
differences in performance. Generally, we find that ranking metric
optimization does not perform very well on this dataset and is not
able to outperform the Softmax loss. We hypothesize that this is
due to the fact that metric-based losses are typically non-convex.
This non-convexity may cause ranking models to get stuck in local
optima, which seems more problematic on the Istella dataset.

Overall, our results show that Rax is able to compete with TF-
Ranking, a state-of-the-art LTR library. Our results suggest that
there is not a clear single superior loss. Generally the Softmax loss
performs strong across all metrics. In some cases, depending on the
metric and dataset, we find that ranking metric optimization can be
beneficial. However, the exact properties of various ranking metric
optimizations are not well understood and our results suggest that
further study should be conducted, which we leave as future work.

6.2 MS MARCO Passage Ranking

The results of the MS MARCO Passage Ranking task are displayed
in Table 2. We find that the standard pointwise sigmoid cross-

entropy loss is a strong baseline for this task. Interestingly, the
ApproxNDCG loss, which was a strong baseline onWEB30K and
Istella performs less well on this dataset. One possible reason is
the extreme sparseness of MS MARCO, where there is effectively
a single relevant result for each list. Finally, we find that Softmax
performs best, achieving a high MRR@10. The number is slightly
higher than the ensemble of multiple BERT-based rankers also fine-
tuned with different ranking losses reported in [19]. However, other
factors such as different pre-trained models or different retrieval
results may also contribute to the improvement.

7 CONCLUSION

In this paper we introduced Rax – the first Learning-to-Rank (LTR)
library in the JAX ecosystem. The library provides implementa-
tions for a number of standard ranking losses and ranking metrics.
Furthermore, Rax provides a set of novel function transformations
that make it possible to re-purpose the ranking metrics as differen-
tiable ranking losses by injecting approximations and/or bounds to
rank and cutoff functions. Unlike existing libraries, this allows for
approximate metric optimization on our entire offering of ranking
metrics in a systematic way. The design of Rax makes it easy to
explore new approximations and bounds for approximate metric
optimization, as well as their Gumbel versions, which opens up
new possibilities for research.

There are several directions for future work. First, Rax provides a
number of ranking losses and metrics but is by nomeans exhaustive.
Our initial offering of ranking losses can be expanded and we
encourage the open source community to collaborate with us to do
so. Second, the design of Rax opens up new ways of performing
ranking metric optimization, including new ways to re-purpose
metrics as losses via differentiable rank and cutoff functions. We
leave studying the exact properties of various approximations and
bounds of those functions as future work.

Rax: Composable Learning-to-Rank using JAX KDD ’22, August 14–18, 2022, Washington, DC, USA

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 265–283.

[2] Aman Agarwal, Kenta Takatsu, Ivan Zaitsev, and Thorsten Joachims. 2019. A
general framework for counterfactual learning-to-rank. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 5–14.

[3] Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, et al. 2020.
The DeepMind JAX Ecosystem. http://github.com/deepmind

[4] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

[5] Sebastian Bruch, Shuguang Han, Michael Bendersky, and Marc Najork. 2020. A
stochastic treatment of learning to rank scoring functions. In Proceedings of the
13th International Conference on Web Search and Data Mining. 61–69.

[6] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd international conference on Machine learning. 89–96.

[7] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. 129–136.

[8] Gabriele Capannini, Domenico Dato, Claudio Lucchese, Monica Mori,
Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, and Nicola Tonel-
lotto. 2015. QuickRank: a C++ Suite of Learning to Rank Algorithms. In IIR.

[9] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[10] Domenico Dato, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando,
Raffaele Perego, Nicola Tonellotto, and Rossano Venturini. 2016. Fast ranking
with additive ensembles of oblivious and non-oblivious regression trees. ACM
Transactions on Information Systems (TOIS) 35, 2 (2016), 1–31.

[11] Mostafa Dehghani, Alexey Gritsenko, Anurag Arnab, Matthias Minderer, and
Yi Tay. 2021. Scenic: A JAX Library for Computer Vision Research and Beyond.
arXiv preprint arXiv:2110.11403 (2021).

[12] Fernando Diaz, Bhaskar Mitra, Michael D Ekstrand, Asia J Biega, and Ben
Carterette. 2020. Evaluating stochastic rankings with expected exposure. In
Proceedings of the 29th ACM International Conference on Information & Knowledge
Management. 275–284.

[13] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of machine learning
research 12, 7 (2011).

[14] Mohamed Fayad and Douglas C Schmidt. 1997. Object-oriented application
frameworks. Commun. ACM 40, 10 (1997), 32–38.

[15] Roy Frostig, Matthew James Johnson, and Chris Leary. 2018. Compiling machine
learning programs via high-level tracing. Systems for Machine Learning (2018).

[16] Yasser Ganjisaffar, Rich Caruana, and Cristina Lopes. 2011. Bagging Gradient-
Boosted Trees for High Precision, Low Variance Ranking Models. In Proceedings
of the 34th international ACM SIGIR conference on Research and development in
Information (SIGIR ’11). 85–94.

[17] Jonathan Godwin*, Thomas Keck*, Peter Battaglia, Victor Bapst, Thomas Kipf,
Yujia Li, Kimberly Stachenfeld, Petar Veličković, and Alvaro Sanchez-Gonzalez.
2020. Jraph: A library for graph neural networks in jax. http://github.com/
deepmind/jraph

[18] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. 2019. Stochastic
optimization of sorting networks via continuous relaxations. arXiv preprint
arXiv:1903.08850 (2019).

[19] Shuguang Han, Xuanhui Wang, Mike Bendersky, and Marc Najork. 2020.
Learning-to-rank with bert in tf-ranking. arXiv preprint arXiv:2004.08476 (2020).

[20] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Ronde-
pierre, Andreas Steiner, and Marc van Zee. 2020. Flax: A neural network library
and ecosystem for JAX. http://github.com/google/flax

[21] Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. 2020. Haiku:
Sonnet for JAX. http://github.com/deepmind/dm-haiku

[22] Matteo Hessel, David Budden, Fabio Viola, Mihaela Rosca, Eren Sezener, and Tom
Hennigan. 2020. Optax: composable gradient transformation and optimisation, in
JAX! http://github.com/deepmind/optax

[23] Rolf Jagerman and Maarten de Rijke. 2020. Accelerated Convergence for Coun-
terfactual Learning to Rank. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. Association for
Computing Machinery, New York, NY, USA.

[24] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[25] Thorsten Joachims. 2002. Optimizing search engines using clickthrough data.
In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining. 133–142.

[26] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[27] Sameer Kumar, Yu Wang, Cliff Young, James Bradbury, Naveen Kumar, Dehao
Chen, and Andy Swing. 2021. Exploring the limits of Concurrency in ML Training
on Google TPUs. Proceedings of Machine Learning and Systems 3 (2021), 81–92.

[28] Tie-Yan Liu. 2011. Learning to rank for information retrieval. (2011).
[29] M McIlroy, EN Pinson, and BA Tague. 1978. UNIX time-sharing system. The Bell

system technical journal 57, 6 (1978), 1899–1904.
[30] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan

Majumder, and Li Deng. 2016. MS MARCO: A human generated machine reading
comprehension dataset. In CoCo@ NIPS.

[31] Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernández Ábrego, Ji Ma,
Vincent Y Zhao, Yi Luan, Keith B Hall, Ming-Wei Chang, et al. 2021. Large Dual
Encoders Are Generalizable Retrievers. arXiv preprint arXiv:2112.07899 (2021).

[32] Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. 2020. Docu-
ment Ranking with a Pretrained Sequence-to-Sequence Model. In Findings of the
Association for Computational Linguistics: EMNLP 2020. 708–718.

[33] Rama Kumar Pasumarthi, Sebastian Bruch, Xuanhui Wang, Cheng Li, Michael
Bendersky, Marc Najork, Jan Pfeifer, Nadav Golbandi, Rohan Anil, and Stephan
Wolf. 2019. Tf-ranking: Scalable tensorflow library for learning-to-rank. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2970–2978.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026–8037.

[35] Przemysław Pobrotyn and Radosław Białobrzeski. 2021. NeuralNDCG: Direct
Optimisation of a Ranking Metric via Differentiable Relaxation of Sorting. arXiv
preprint arXiv:2102.07831 (2021).

[36] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 Datasets. CoRR
abs/1306.2597 (2013). http://arxiv.org/abs/1306.2597

[37] Tao Qin, Tie-Yan Liu, and Hang Li. 2010. A general approximation framework
for direct optimization of information retrieval measures. Information retrieval
13, 4 (2010), 375–397.

[38] Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui
Wang, Michael Bendersky, and Marc Najork. 2021. Are Neural Rankers still
Outperformed by Gradient Boosted Decision Trees?. In International Conference
on Learning Representations.

[39] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the lim-
its of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683 (2019).

[40] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research 21, 140 (2020), 1–67.

[41] Samuel Schoenholz and Ekin Dogus Cubuk. 2020. Jax md: a framework for
differentiable physics. Advances in Neural Information Processing Systems 33
(2020), 11428–11441.

[42] D Sculley. 2009. Large scale learning to rank. In NIPS 2009 Workshop on Advances
in Ranking.

[43] Pranav Subramani, Nicholas Vadivelu, and Gautam Kamath. 2021. Enabling fast
differentially private sgd via just-in-time compilation and vectorization. Advances
in Neural Information Processing Systems 34 (2021).

[44] Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. 2008. Softrank:
optimizing non-smooth rank metrics. In Proceedings of the 2008 International
Conference on Web Search and Data Mining. 77–86.

[45] Aleksei Ustimenko and Liudmila Prokhorenkova. 2020. Stochasticrank: Global op-
timization of scale-free discrete functions. In International Conference on Machine
Learning. PMLR, 9669–9679.

[46] Mingrui Wu, Yi Chang, Zhaohui Zheng, and Hongyuan Zha. 2009. Smoothing
DCG for learning to rank: A novel approach using smoothed hinge functions. In
Proceedings of the 18th ACM conference on Information and knowledgemanagement.
1923–1926.

[47] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise
approach to learning to rank: theory and algorithm. In Proceedings of the 25th
international conference on Machine learning. 1192–1199.

[48] Yisong Yue and C Burges. 2007. On using simultaneous perturbation stochastic
approximation for learning to rank, and the empirical optimality of LambdaRank.
Microsoft Res., Redmond, WA, USA, Tech. Rep. MST-TR-2007-115 (2007).

http://github.com/deepmind
http://github.com/google/jax
http://github.com/deepmind/jraph
http://github.com/deepmind/jraph
http://github.com/google/flax
http://github.com/deepmind/dm-haiku
http://github.com/deepmind/optax
http://arxiv.org/abs/1306.2597

KDD ’22, August 14–18, 2022, Washington, DC, USA Rolf Jagerman et al.

A EXAMPLE WORKFLOW

This appendix provides a reproducible example of using a Rax
ranking loss to optimize a linear ranking model on a synthetic LTR
dataset 14. The code in Listing 8 uses a linear model as indicated
by the score function definition in line 22. The model is essentially
defined as a dot-product between the weights (representing the
model we wish to optimize) and x (representing the features of lists
of items). The training step is implemented as a single PSC function
as defined on line 27. This training step does a few things: First, it
defines a loss function on line 28, which is expressed as a mapping
of weights to a loss value. Second, it uses this loss function to
compute gradients with respect to the weights on line 29. Third, a
single gradient descent step is performed on line 30. The training
step is repeatedly called in a training loop on line 37. Prior to calling
the training step we first evaluate the model on NDCG on lines 39
and 40. Given that this toy dataset is a synthetic example, it is trivial
to reach the optimal NDCG quickly. From the output of this code
we can see that it reaches the optimal NDCG in just three iterations.
This code demonstrates how easy it is to use a Rax ranking loss and
metric to train and evaluate an LTR model. Furthermore, although
this toy problem is very small and has no performance bottlenecks,
the training step is compiled using jax.jit which means it can run
on an accelerated device such as a TPU without requiring any extra
implementation effort.

14This dataset is the example train dataset from SVM-rank [25] obtained from https:
//www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Listing 8:Workflowof training a linear rankingmodel using

Rax and JAX.

1 import jax
2 import rax
3

4 # Synthetic LTR data.
5 x = jax.numpy.array([[[1., 1., 0., 0.2, 0.],
6 [0., 0., 1., 0.1, 1.],
7 [0., 1., 0., 0.4, 0.],
8 [0., 0., 1., 0.3, 0.]],
9 [[0., 0., 1., 0.2, 0.],
10 [1., 0., 1., 0.4, 0.],
11 [0., 0., 1., 0.1, 0.],
12 [0., 0., 1., 0.2, 0.]],
13 [[0., 0., 1., 0.1, 0.],
14 [1., 1., 0., 0.3, 0.],
15 [1., 0., 0., 0.4, 1.],
16 [0., 1., 1., 0.5, 0.]]])
17 y = jax.numpy.array([[2., 1., 0., 0.],
18 [0., 1., 0., 0.],
19 [1., 2., 3., 0.],])
20

21 # Linear model scoring function
22 def score(weights, x):
23 return jax.numpy.dot(x, weights)
24

25 # Define training step as a single PSC function.
26 @jax.jit
27 def train_step(weights, x, y):
28 loss_fn = lambda w: rax.softmax_loss(score(w, x), y)
29 grads = jax.grad(loss_fn)(weights)
30 weights -= 0.1 * grads
31 return weights
32

33 # Initialize model weights to 0.
34 weights = jax.numpy.zeros((5,))
35

36 # Perform three gradient descent iterations.
37 for i in range(3):
38 # Print NDCG for current model weights.
39 ndcg = rax.ndcg_metric(score(weights, x), y)
40 print(f"NDCG: {ndcg:.4f}")
41

42 # Perform gradient descent step.
43 weights = train_step(weights, x, y)
44

45 # Prints:
46 # NDCG: 0.7705
47 # NDCG: 0.9880
48 # NDCG: 1.0000

https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Learning-to-Rank
	3.2 JAX

	4 Design of Rax
	4.1 A Unified Ranking Loss Design
	4.2 Ranking Metrics
	4.3 Differentiable Metrics via Function Transformations

	5 Experiments
	5.1 LTR Benchmarks
	5.2 MS MARCO Passage Ranking

	6 Results
	6.1 LTR Benchmarks
	6.2 MS MARCO Passage Ranking

	7 Conclusion
	References
	A Example workflow

