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ABSTRACT
As a powerful representation paradigm for networked and multi-
typed data, the heterogeneous information network (HIN) is ubiq-
uitous. Meanwhile, de�ning proper relevance measures has always
been a fundamental problem and of great pragmatic importance for
network mining tasks. Inspired by our probabilistic interpretation
of existing path-based relevance measures, we propose to study
HIN relevance from a probabilistic perspective. We also identify,
from real-world data, and propose to model cross-meta-path syn-
ergy, which is a characteristic important for de�ning path-based
HIN relevance and has not been modeled by existing methods. A
generative model is established to derive a novel path-based rele-
vance measure, which is data-driven and tailored for each HIN. We
develop an inference algorithm to �nd the maximum a posteriori
(MAP) estimate of the model parameters, which entails non-trivial
tricks. Experiments on two real-world datasets demonstrate the
e�ectiveness of the proposed model and relevance measure.

CCS CONCEPTS
•Information systems→ Data mining; Similarity measures;
•Computing methodologies→ Maximum a posteriori modeling;

KEYWORDS
Heterogeneous information networks, graph mining, meta-paths,
relevance measures.

1 INTRODUCTION
In real-world applications, objects of various types are o�en in-
terconnected with each other. �ese objects, together with their
relationship, form numerous heterogeneous information networks
(HINs) [14, 16]. Bibliographical information network is a typical
example, where researchers, papers, organizations, and publication
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venues are interrelated. A fundamental problem in HIN analysis is
to de�ne proper measures to characterize the relevance between
node pairs in the network, which also bene�ts various downstream
applications, such as similarity search, recommendation, and com-
munity detection [14, 16].

Most existing studies derive their HIN relevance measures on the
basis of meta-path [14, 16, 17], which is de�ned as a concatenation
of multiple node types linked by corresponding edge types. Based
on the concept of meta-path, researchers have proposed PathCount,
PathSim [17], and path constrained random walk [10] to measure
relevance between node pairs. On top of these studies, people have
explored the ideas of incorporating richer information [6, 21] and
more complex typed structures [4, 7, 13] to de�ne more e�ective
relevance scoring functions, or adding supervision to derive task-
speci�c relevance measures [2, 19, 23].

�e probabilistic perspective. While building upon this pow-
erful meta-path paradigm, we aim to additionally understand and
model relevance from the probabilistic point of view. In this regard,
we establish a probabilistic interpretation of existing HIN relevance
measures, which is achieved by modeling the generating process of
all path instances in an HIN and deriving the relevance of a node
pair from the likelihood of observing the path instances connecting
them. Relevance and likelihood can be connected by this approach
because only a small portion of node pairs in an HIN are actually
relevant; and a proper generating process has low likelihood to
generate the path instances between each of these relevant node
pairs. We will detailedly discuss this probabilistic interpretation
in Sec. 3. Moreover, as a starting point for studying HIN relevance
from the probabilistic perspective, we focus the scope of this paper
on the basic unsupervised scenario. Meanwhile, we assume that
the meta-paths of interest are already given. �at is, we defer the
study on the cases with label information and meta-path selection
to future work.

In order to determine relevance between any pair of nodes, we
have the key insight that a path-based HIN relevance should contain
three characteristics – node visibility, path selectivity, and cross-
meta-path synergy – which we describe in the following paragraphs.

Node visibility. One straightforward way to derive relevance in
an HIN is PathCount [17]. For a meta-path t ∈ {1, . . . ,T }, Path-
Count is de�ned as the number of paths, Pst or equivalently P〈uv〉t ,
under this meta-path between a node pair s = (u,v ) ∈ V ×V , i.e.,
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Figure 1: (a)�e same composite score (x) may be aggregated
from di�erent number of meta-paths, where score is repre-
sented by the length of the rectangles and each �ll pattern
represents a meta-path. (b) An observation made from an
entity resolution task on theDBLP dataset that if linear com-
bination is used to compute the composite score, node pairs
with paths under multiple meta-paths are more likely to be
relevant than those under only one meta-path. Prevalence
is de�ned as the number of relevant node pairs divided by
the total number of node pairs.

PathCount (t ) (u,v ) B P〈uv〉t . One obvious drawback of this mea-
sure is that it favors nodes with high node visibility, i.e., nodes with
a large number of paths. To resolve this problem, [17] proposed
to penalize PathCount by the arithmetic mean of the numbers of
cycles a�ached to the two involved nodes, i.e., PathSim(t ) (u,v ) B

2·P〈uv 〉t
P〈uu〉t+P〈vv 〉t

. A similar design to model node visibility can be found
in JoinSim [20], which is de�ned as PathCount penalized by geo-
metric mean of the cycle numbers.

Path selectivity. Given any method de�ning relevance score
under one meta-path, a natural question is how to combine mul-
tiple meta-paths to derive a uni�ed relevance score – henceforth
referred to as the composite score. To achieve this goal, Sun et al.
[17] proposed to assign di�erent weights to di�erent meta-paths,
and compute the composite score via linear combination. Let w =
{w1, . . . ,wT }withwt being the weight for meta-path t , the compos-
ite score of PathCount is given by PathCountw (u,v ) B

∑T
t=1wt ·

PathCount (t ) (u,v ). Similarly, one can de�ne PathSimw (u,v ). �is
linear combination approach is adopted by follow-up works with
multiple applications [14, 16], including personalized entity recom-
mendation problem [22], outlier detection [9, 24], etc. �e weights
assigned or inferred in these cases specify how selective each meta-
path is. �e larger the path selectivity, the more signi�cant this
meta-path is in contributing to the composite score.

Cross-meta-path synergy. Suppose linear combination is used
to �nd the composite score as in the previous paragraph, the two
scenarios shown in Fig. 1a would receive the same composite score
(x ), where xi equals to the score from the i-th meta-path multiplied
by the corresponding weight. However, we have the observation
that, when meta-paths do not clearly correlate, the la�er scenario
tends to imply a higher relevance. We take an entity resolution
task on the DBLP dataset as example, which aims to merge author
mentions that refer to the same entity. In this task, each node

stands for an author mention, and each meta-path represents that
two author mentions have both published papers in one particular
research area. We label two author mentions as relevant if and
only if they refer to the same entity, and we use PathCount with
uniform weights as an example to compute the composite score.
Results presented in Fig. 1 shows that with the same composite
score, node pairs associated by paths under multiple meta-paths
are more likely to be relevant than those under only one meta-
path. We refer to this phenomenon as cross-meta-path synergy. We
interpret this phenomenon as given the occurrence of one path,
the happenstance of another path under the same meta-path may
not be surprising, while the co-occurrence of two paths under
two uncorrelated meta-paths may be a strong signal of relevance.
Moreover, we should also realize that not necessarily all meta-path
pairs are uncorrelated, which has been observed in a special type of
HIN [15]. �is implies cross-meta-path synergy does not necessarily
exist between all pairs of meta-paths, and we deem a good relevance
measure should re�ect this di�erence.

Challenges and contributions. Regarding the three pivotal
characteristics for path-based HIN relevance discussed above, the
major challenge lies in how to integrate all these characteristics in a
uni�ed framework. We tackle this challenge by studying path-based
relevance from a probabilistic perspective, and deriving relevance
measure from a generative model. Since the model parameters
are trained to �t each HIN, the derived relevance measure enjoys
the property of being data-driven. �at is, the derived relevance
measure is tailored for each HIN. Lastly, we summarize our contri-
butions as follows:

(1) We establish the probabilistic interpretation of existing path-
based HIN relevance measures.

(2) We identify and propose to model cross-meta-path synergy,
an important characteristic in path-based HIN relevance.

(3) We propose a novel relevance measure based on a generative
model, which is data-driven and tailored for each HIN, and
develop an inference algorithm with non-trivial tricks.

(4) Experiments on two real-world HINs corroborate the e�ec-
tiveness of our proposed model and relevance measure.

2 PRELIMINERIES
In this section, we introduce the concepts and notations used in
this paper.

De�nition 2.1 (Heterogeneous Information Network). An infor-
mation network is a directed graphG = (V, E) with a node type
mapping f : V → A and an edge type mapping д : E → R.
Particularly, when the number of node types |A| > 1 or the num-
ber of edge types |R | > 1, the network is called a heterogeneous
information network (HIN).

Due to the typed essence of HINs, paths that associate node pairs
can be grouped under di�erent meta-paths. We formally de�ne
meta-paths as follows.

De�nition 2.2 (Meta-Path). A meta-path is a concatenation of
multiple nodes or node types linked by edge types.

An example of a meta-path is [author] writes
−−−−−→ [paper] writes−1

−−−−−−−→

[author], where a phrase in the brackets represents a node type and
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a phrase above the arrow refers to an edge type. When context is
clear, we simply write [author]–[paper]–[author]. In this paper, we
study the relevance problem when a set of meta-paths of interest is
prede�ned by users.

To ease presentation, we focus on unweighted HINs, and model
path count de�ned as follows. Note that the path-based model to
be proposed in this paper can be extended to the weighted case.

De�nition 2.3 (Path Count). �e path count of a meta-path t ∈
{1, . . . ,T } between a node pair s = (u,v ) ∈ V×V is the number of
concrete path instances under this meta-path that start from node
u to node v , which is denoted by Pst or P〈uv〉t .

Note that the relevance score given by the PathCount measure
[17] is exactly the path count of a meta-path between a node pair.

Lastly, we introduce the probability distributions to be used.

De�nition 2.4. �e probability density functions of three proba-
bility distributions used in this paper are given as follows.

(1) Exponential distribution Exp
(
λ̃
)

with rate parameter λ̃ > 0:

p (x ) = λ̃ eλ̃x (x > 0).

(2) Gamma distribution Γ
(
α̃ , β̃

)
with shape parameter α̃ > 0

and rate parameter β̃ > 0:

p (x ) =
β̃ α̃

Γ(α̃ )
x α̃−1 e−β̃x (x > 0),

where Γ(α̃ ) =
∫ ∞

0 t α̃−1 e−t dt is the gamma function.
(3) Symmetric Dirichlet distribution DirL (α̃ ) of order L and

concentration parameter α̃ :

p (x1, . . . ,xL ) =
Γ (α̃L)

Γ (α̃ )L

L∏
i=1

x α̃−1
i (xi > 0 and

L∑
i=1

xi = 1),

where Γ(·) is the gamma function.

We denote Exp
(
x ; λ̃

)
B p (x ) the probability density function

of Exp
(
λ̃
)
, and denote x ∼ Exp

(
λ̃
)

if x is generated from Exp
(
λ̃
)
.

Similar notations are also used for Γ
(
α̃ , β̃

)
and DirL (α̃ ).

3 PROBABILISTIC INTERPRETATION OF
EXISTING RELEVANCE MEASURES

In this section, we illustrate the probabilistic interpretation of ex-
isting path-based HIN relevance measures. We achieve this by
studying the generating process of path counts between node pairs
in an HIN, which contains a connection between relevance and the
negative log likelihood. Suppose the path count under meta-path t
between node pair s is generated from an exponential distribution

Pst ∼ Exp (λ) ,

with �xed rate λ, then in terms of the rank it yields, the negative log
likelihood of all observed paths under meta-path t between node
pair s will be equivalent to the PathCount under meta-path t

−LL(t ) (s ) = − log(λ e−λPst ) = λPst − log λ

∝ Pst + const = PathCount (t ) (s ) + const.

Further, if we assume path instances under di�erent meta-paths
are generated from exponential distribution with meta-path-speci�c

Symbol De�nition
V �e set of all nodes
S �e set of all nontrivial node pairs

T ∈ N �e number of meta-paths
K ∈ N �e number of generating pa�erns

P ∈ R |S |×T
�e observed path counts between node pairs

over each meta-path
η ∈ RT �e path selectivity
τ ∈ R |S | �e node pair visibility
ρ ∈ R |V | �e node visibility

Θ ∈ R |S |×K �e generating pa�erns over meta-paths
Φ ∈ RK×T �e choices of generating pa�erns between node pairs
α ∈ R+ �e shape parameter of the gamma prior
β ∈ (0, 1) �e concentration parameter of the Dirichlet prior

Table 1: Summary of symbols

rates w = (w1,w2, . . . ,wT ), i.e., Pst ∼ Exp (wt ), then the negative
log likelihood of all observed path counts will be equivalent to
PathCount with weights w for linear combination

−LL(s ) = − log(
∏
t
wt e−wt Pst ) =

∑
t
wtPst −

∑
t

logwt

=
∑
t
wtPst + const = PathCountw (s ) + const.

Moreover, if we assume each node pair s has pair-speci�c gener-
ating rate proportional to a parameter κs , i.e., Pst ∼ Exp (wt /κs ),
then the negative log likelihood of observed path counts will be
−LL(s ) =

∑
t wt ·

Pst
κs +T logκs + const. For node pair s = (u,v ), if

we drop the logarithm term and set κs to be the arithmetic mean of
the cycle count of the involved nodes u andv , the formula becomes∑

t
wt ·

2 · P〈uv〉t
P〈uu〉t + P〈vv〉t

= PathSimw (s )

which is identical to PathSim with weightsw for linear combination.
In lieu of arithmetic mean, if we set κs to be the geometric mean of
the same quantities, we get ∑t wt ·

P〈uv 〉t√
P〈uu〉t ·P〈vv 〉t

,which is identical
to JoinSim with weights w for linear combination. Note that all the
relevance measures discussed in this section are special cases of
our relevance measure to be proposed in the next section.

4 PROPOSED MODEL AND RELEVANCE
With the relevance–likelihood connection established in Sec. 3, we
propose our Path-based Relevance from Probabilistic perspective
(PReP) likewise by modeling the generating process of path counts
between node pairs, and further aim to model the three important
characteristics. In a nutshell, the proposed generative-model-based
relevance measure consists of two major parts: (i) inferring model
parameters by �nding the maximum a posteriori (MAP) estimate
to �t the input HIN, and (ii) deriving relevance score between any
node pair based on the learned model.

4.1 �e PReP Model
Following the existing HIN relevance measures discussed in Sec. 3,
we assume the path count, Pst or P〈uv〉t , between node pair s =
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Figure 2: Toy example for one part of an HIN, consisting of four node types: person, university, location, and discipline.

(u,v ) under meta-path t is generated from an exponential distribu-
tion with rate λst , i.e., Pst ∼ Exp (λst ). To capture node visibility,
path selectivity, and cross-meta-path synergy, we must design λst
in a way that can model these three characteristics.

According to the property of exponential distribution, if a ran-
dom variable X is generated from Exp

(
λ̃
)
, then the expectation of

X will be 1/λ̃. Bearing this in mind, we introduce three components
to model the three characteristics as follows.
• Both the node visibility of u and that ofv a�ect the generation

of path instances. We consider the visibility of this pair of
node as node pair visibility, τs , which is positively correlated
with the expectation of Pst .

• We let path instances under the same meta-path share the same
path selectivity. Denote ηt the path selectivity for meta-path t .
ηt is negatively correlated with the expectation of Pst .

• Each node pair with paths in between can be linked by path
instances under a di�erent set of meta-paths. We assume
an underlying meta-path distributionψs = [ψs1, . . . ,ψsT ] for
node pair s , where ∑T

t=1ψst = 1 andψst ≥ 0. As a distribution
over meta-paths, ψs models the semantics of the relevance
between this node pair, because each meta-path carries its
own semantic meaning. With further design to be introduced,
ψs also serves as the basis to capture cross-meta-path synergy.
ψst is positively correlated with the expectation of Pst .

Pu�ing the above three components together considering their cor-
relation with the expectation of Pst , we �nd path count generating
process as

Pst ∼ Exp
(
ηt

τsψst

)
, (1)

where the detailed illustration and design of the three components
are to be further discussed in this section. Note that while we
only discuss unweighted HINs in this paper, the use of exponential
distribution in Eq. (1) enables the model to handle weighted HINs,
where paths are associated with real-valued path strengths, and
Pst may not be integers to re�ect the path strengths.

Since node pairs with no paths under any prede�ned meta-path
should trivially receive the lowest possible relevance score, we only
model the generation of path counts between node pairs with paths
in between – henceforth referred to as nontrivial node pairs – and
we denote S the set of all nontrivial node pairs.

Illustrative example. To be�er illustrate how each component
design a�ects the path generation process, we present a toy example
in Fig. 2, which shows a part of an HIN with four node types: person,
university, location, and discipline. We concern three meta-paths

in this network: M1 : [person] a�ends
−−−−−−→ [university] a�ends−1

−−−−−−−−→

[person], M2 : [person] livesIn
−−−−−→ [location] livesIn−1

−−−−−−−→ [person],

M3 : [person]
majorsIn
−−−−−−−→ [discipline]

majorsIn−1

−−−−−−−−−→ [person].

Decoupling node pair visibility. To model node visibility, we
decouple node pair visibility τs in Eq. (1) into two parts as in Path-
Sim and JoinSim discussed in Sec. 3. �e two parts correspond to
the node visibility ρu and ρv , respectively, where s = (u,v ), and
ρz > 0 for all z ∈ V . In our design, we let

τ(u,v ) = ρuρv (2)

as in JoinSim because decoupling by multiplication eases model
inference, which will be made clear in the next paragraph.

Since a trivial rescaling – multiplying all ρz by a constant and
multiplying all ηt by the square of the same constant – leads to
exactly the same model (Eq. (1)), we further regularize ρz by a
gamma prior with a constant rate parameter

ρz ∼ Γ (α , 1) . (3)

Note that we arbitrarily set the rate parameter to be 1 since the
shape of the distribution is solely determined by the shape pa-
rameter α . We choose gamma distribution as the prior for ρz be-
cause it is the conjugate prior for the exponential distribution,
and this fact will largely facilitate the inference algorithm as we
will show in Sec. 5.2. To determine the shape parameter α , we
�t the gamma distribution to the total path count each node has,
{
∑T
t=1

∑
z̃∈V P〈zz̃〉t }z∈V , in the HIN as a rough prior information.

Path selectivity at meta-path level. We assume path instances
under meta-path t share the same path selectivity ηt . In the scope of
this paper, where supervision is not available, we assume uninfor-
mative prior on ηt . In future work where supervision is provided,
we can further learn ηt by minimizing the di�erence between super-
vision and model output to derive a task-speci�c relevance measure.

Cross-meta-path synergy and generating patterns. As dis-
cussed in Sec. 1, we have observed the existence of cross-meta-path
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Measure Node Pair M1 M2 M3 Composite Truth

PathCount Mordo & Wong 1 1 0 w1 +w2 −

Mordo & Stephen 1 0 1 w1 +w3 +

PathSim Mordo & Wong 0.67 1 0 0.67w1 +w2 −

Mordo & Stephen 0.67 0 1 0.67w1 +w3 +

RWR (C = 0.9) Mordo & Wong 0.29 0.47 0 0.29w1 + 0.47w2 −

Mordo & Stephen 0.25 0 0.31 0.25w1 + 0.31w3 +

PReP Mordo & Wong 1 generating pa�ern −

Mordo & Stephen 2 generating pa�erns +

Table 2: Existing measures cannot yield desired relevance,
unless we assert M3 (discipline) is always more selective
than M2 (location), while PReP can achieve this by recog-
nizing the co-occurrence of multiple generating patterns.

synergy in real-world HIN, and this characteristic has not been
modeled by existing HIN relevance measures. In case meta-paths
do not correlate, we may simply add a Dirichlet prior, with con-
centration parameter smaller than 1, over meta-path distribution
ψs for all node pair s . �is use of Dirichlet prior resembles latent
Dirichlet allocation (LDA) [1], where the Dirichlet prior prefers
sparse distributions, i.e., most entries of ψs tend to be 0. �ere-
fore, the co-occurrence of paths under di�erent meta-paths gets
a lower likelihood from this prior, and a�ains a higher relevance
score under our relevance–likelihood connection.

However, in reality, it would not be surprising to see two people
a�ending UC Berkeley also both live in the City of Berkeley. �is
implies cross-meta-path synergy does not necessarily exist between
all pairs of meta-paths, e.g., it may not exist between meta-path
M1 and meta-pathM2 in the toy example of Fig. 2. To address
this situation, we introduce a new component – generating pa�erns.
Each of a total of K generating pa�erns is a distribution over the T
meta-paths, where meta-paths that o�en co-occur between node
pairs will also be included in a common generating pa�ern, and
when a node pair s generates a path instance in between, it would
�rst choose generating pa�ern k with probability ϕsk , and then
choose meta-path t from this generating pa�ern with probability
θkt . Formally, we describe this process as

ψst =
K∑
k=1

ϕskθkt , (4)

where ϕs = [ϕs1, . . . ,ϕsK ] is node pair s’s choices of generating
pa�erns, such that ∑K

k=1 ϕsk = 1, ϕsk ≥ 0; andθk = [θk1, . . . ,θkT ]
is generating pa�ern k’s distribution over meta-paths, such that∑T
t=1 θkt = 1, θkt ≥ 0.
A symmetric Dirichlet prior is then enforced on ϕs , so that

synergy will be recognized between and only between meta-paths
from di�erent generating pa�erns

ϕs ∼ DirK (β ) , (5)
where β ∈ (0, 1) is the concentration hyperparameter.

With this design, our model gives a lower likelihood and higher
relevance score to Mordo and Stephen (same university, same major)
than Mordo and Wong (a�ending UC Berkeley and living in the City
of Berkeley) in the toy example of Fig. 2 by learning a generating
pa�ern that includes bothM1 andM2. Whereas, other relevance
measures cannot achieve this desired relationship as presented in
Tab. 2, unless we set the weights w2 > w3, or equivalently assert
M2 (location) is always less selective thanM3 (discipline).

�e uni�ed model. For notation convenience, we use the bold
italic form to represent the corresponding matrix or vector of each
symbol with subscripts. For instance, the (s, t ) element of P is Pst
and the t-th element of η is ηt . Under this notation, combining
Eq. (1), (3), and (5), with Eq. (2) and (4) substituted into Eq. (1),
yields the total likelihood of the full PReP model

L = p (P ,η, ρ,Φ,Θ | α , β )

=




∏
u ∈V

Γ (ρu ; (α , 1))


·




∏
s ∈S

DirK (ϕs ; β )



·




∏
s ∈S

(u,v )=s

T∏
t=1

Exp *
,
Pst ; ηt

ρuρv
∑K
k=1 ϕskθkt

+
-




(6)

4.2 �e PReP Relevance Measure
Given the uni�ed model (Eq. (6)), we have two options to derive
relevance measure using likelihood: (i) �nd the maximum a posteri-
ori estimate for all parameters and compute the total likelihood of
the observed data, and (ii) consider all model parameters as hidden
variables and de�ne the relevance as the marginal likelihood of the
observed data. However, the marginal likelihood does not have a
closed-form representation in our case, nor can we approximate it
with regular Markov chain Monte Carlo algorithms due to the large
number of hidden variables. �erefore, we adopt the �rst option
and defer the other to future work.

Once the model parameters {η, ρ,Φ,Θ} are estimated, we de�ne
the PReP relevance for a node pair s = (u,v ) as the negative log-
likelihood involving this node pair, − logp (Ps, :,ϕs | Θ, ρ,η,α , β ),
without the log term as in the derivation of PathSim in Sec. 3

r (s ) =
T∑
t=1

Pst

ρuρvηt
∑K
k=1 ϕskθkt

+ (1 − β )
K∑
k=1

logϕsk . (7)

Note that PathCount, PathSim, and JoinSim discussed in Sec. 3 are
special cases of this PReP relevance measure, when {η, ρ,Φ,Θ} are
heuristically speci�ed accordingly.

5 MODEL INFERENCE
In this section, we introduce the inference algorithm for the PReP
model (Eq. (6)) proposed in Sec. 4.

5.1 �e Optimization Problem
We �nd the maximum a posteriori (MAP) estimate for model pa-
rameters by minimizing the negative log-likelihood of the proposed
model (Eq. 6), which, with an o�set of a constant, is given by

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

429



Algorithm 1: Inference algorithm for the PReP model
Input : the observed path counts P and the hyperparameters
Output : the model parameters η, ρ, Φ, and Θ
begin

Initialize ρ, Φ, and Θ

while not converged do
Update η by the closed-form Eq. (10)
while not converged do

for u ∈ V do
Update ρu by the closed-form solution to
Eq. (11)

Update Φ via parallelized PGD with gradient in
Eq. (13)
Update Θ via PGD with gradient in Eq. (12)

O =
∑
u ∈V

(ρu − (α − 1) log ρu ) − (β − 1)
∑
s ∈S

K∑
k=1

logϕsk

+T
∑

(u,v )∈S

(log ρu + log ρv ) − |S|
T∑
t=1

logηt

+
∑
s ∈S

(u,v )=s

T∑
t=1


log

K∑
k=1

ϕskθkt +
ηtPst

ρuρv
∑K
k=1 ϕskθkt


, (8)

and the optimization problem is therefore

min
η,ρ,Φ,Θ

O (η, ρ,Φ,Θ). (9)

We solve the above minimization problem with an iterative al-
gorithm to be detailed in the following Sec. 5.2.

5.2 �e Inference Algorithm
We iteratively update one of η, ρ, Φ, and Θ when the others are
�xed. �e inference algorithm is summarized in Algorithm 1.

Update η given {ρ,Φ,Θ} . Once given ρ, Φ, and Θ, the optimal
η that minimizes O in Eq. (8) has a closed-form solution. One can
derive this closed-form update formula by looking back to the total
likelihood Eq. (6), since

L ∝
∏
s ∈S

T∏
t=1

Exp *
,
Pst ; ηt

τs
∑K
k=1 ϕskθkt

+
-

=

T∏
t=1


Exp *.

,

1
|S|

∑
s ∈S

Pst

τs
∑K
k=1 ϕskθkt

; ηt +/
-



|S |

,

where τs = ρuρv for node pair s = (u,v ). Using the property of
exponential distributions, we �nd the η that maximizes L, and
hence minimizes O, can be computed by

ηt =
*.
,

1
|S|

∑
s ∈S

Pst

τs
∑K
k=1 ϕskθkt

+/
-

−1

. (10)

Update ρ given {η,Φ,Θ} . Unlike η, closed-form formula for up-
dating ρ does not exist because (i) ρ has an informative prior, and (ii)
the generating process for paths between node pair (u,v ) involves
the coupling of ρu and ρv . Fortunately, the gamma distribution
is the conjugate prior to the exponential distribution. �erefore,
for each u, when the rest {ρv }v,u are �xed, the closed-form up-
date formula for ρu can be derived as follows. Denote {ξs }s ∈S the
following quantities that are �xed during the ρ update phase

ξs B
T∑
t=1

ηtPst∑K
k=1 ϕskθkt

,

and we have ∂O
∂ρu
=

∑
v ∈V\{u }
s=(u,v )

[∑T
t=1

1
ρu −

ξs
ρ2
u ρv

]
− α−1

ρu + 1. Set-

ting this partial derivative to 0 leads to

ρ2
u + [( |V | − 1) ·T − (α − 1)] ρu −

∑
v ∈V\{u }
s=(u,v )

ξs
ρv
= 0. (11)

Note that Eq. (11) is a single-variable quadratic equation with one
positive and one negative roots. Furthermore, O is convex w.r.t. ρu
on the positive half-axis, and the positive root is a minimum of O.
�erefore, the optimal ρu that minimizes O is given by the positive
root of the quadratic equation (Eq. (11)), which has closed-form
solution. Holistically, we update ρ by iterating through u ∈ V to
update ρu with the aforementioned closed-form solution to Eq. (11).

Update Θ given {η, ρ,Φ} . To update Θ, we use the projected
gradient descent (PGD) algorithm [12]. �e gradient is given by

∂O

∂Θ
= Φ>

[
1
ΦΘ
−

P

(τ (η◦−1)>) ◦ (ΦΘ)◦2

]
, (12)

where [·] ◦ [·], [·]
[·] , and [·]◦[·] are element-wise multiplication, divi-

sion, and power. Additional constraint fed into PGD is that each
row of Θ lies in the standard (T − 1)-simplex, i.e., ∑T

t=1 θkt = 1 for
all k ∈ {1, ...,K } and θkt ≥ 0 for all (k, t ) ∈ {1, ...,K } × {1, ...,T }.
Projection onto the standard simplex or the direct product of multi-
ple standard simplices can be achieved e�ciently using the method
introduced in [3].

Update Φ given {η, ρ,Θ} . Similarly, we use PGD to update Φ,
where the gradient is given by

∂O

∂Φ
=

[
1
ΦΘ
−

P

(τ (η◦−1)>) ◦ (ΦΘ)◦2

]
Θ> −

β − 1
Φ
. (13)

However, directly updating the entire Φ using PGD can be prob-
lematic, because the row number of Φ is the same as the number
of nontrivial node pairs, |S|, which can be signi�cantly larger than
that of Θ.

Fortunately, we can decompose the update scheme for Φ by
rows, because each row is independent from the others. Speci�-
cally, we update each row s using PGD in parallel, with gradient
∂O
∂Φs, :

=

[
1

Φs, :Θ
−

Ps, :
(τs (η◦−1 )> )◦(Φs, :Θ)◦2

]
Θ> −

β−1
Φs, :
, and constraints∑K

k=1 ϕsk = 1 for all s ∈ S and ϕst ≥ 0 for all (s,k ) ∈ S× {1, ...,K }.

5.3 Implementation Details
For program reproducibility, we provide details in parameter ini-
tialization and computational singularity handling.
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Since the inference algorithm starts with updating η, no initial-
ization for η is needed. ρ is initialized by drawing random samples
from its prior distribution, Γ (α , 1), where α is estimated from data
as discussed in Sec. 4. Φ is initialized uniformly at random within
the row-wise simplex constraint. For Θ, the �rst T rows of this
K ×T matrix are initialized to be an identity matrix, because many
node pairs with paths in between involve only one meta-path, and
we initialize the rest K −T rows uniformly at random within the
row-wise simplex constraint. �is choice is out of the consideration
that the PReP model is not convex over all parameters.

Dirichlet distribution is de�ned over open sets with unbounded
probability density function. As a result, when using MAP, certain
components of Φ can be inferred to approach the singularities along
the boundary. �erefore, in practice, we let Φ to be bounded away
from the boundary with an in�nitesimal quantity δ , i.e., each of
its entries must not only be positive, but also be greater or equal
to δ . In this way, we keep the capability of Dirichlet distribution
in modeling cross-meta-path synergy, while ensuring the model
is computationally meaningful. In our experiment, we set δ =
10−50. With this constraint, the domain of de�nition for Φ is no
longer a standard simplex as discussed in [3]. For this reason, we
provide the algorithm for e�cient projection onto this shrunken
simplex, {x ∈ RK |xi ≥ δ ,

∑K
i=1 xi = 1} in the Appendix, which

is required by the inference algorithm. Note that if one wishes
to evade the point estimation of parameters in the PReP model,
Eq. (6), and thereby avoid computational singularity, they can treat
all model parameters as hidden variables and derive relevance from
the marginal likelihood of the observed data as discussed in Sec. 4.2.
�e exploration of this direction requires novel method, such as a
sampling algorithm design for our model, to e�ciently calculate
marginal likelihood, and we defer this to future work.

6 EXPERIMENTS
In this section, we quantitatively evaluate the proposed model
on two publicly available real-world HINs: Facebook and DBLP.
We �rst describe the datasets and the unsupervised tasks used for
evaluation. Baselines and model variations for comparison are then
introduced. A�erward, we present experiment results together with
discussions, which demonstrate the advantage of using probability
as the backbone of relevance.

6.1 Data Description and Evaluation Tasks
In this section, we introduce the two publicly available real-world
datasets and the evaluation tasks.

�e Facebook dataset. �is dataset [11] contains nodes of 11
types, including user, major, degree, school, hometown, surname,
location, employer, work-location, work-project, and other. It con-
sists of 5, 621 nodes and 98, 023 edges, among which 4, 167 nodes
are of the user type. We aim to determine the relevance between
users, using 10 meta-paths, each of the form [user]–[X]–[user],
where X is any of the above 11 node types except for other.

To derive ground truth label between user pairs for evaluation,
we use being friends on Facebook as a proxy for being relevant.
�is dataset is collected by recruiting participants to label their own
Facebook friends It consists of 10 distinct ego networks, where an
ego network consists of one ego user and all her friends together

with edges a�ached to these users. We hence perform one sub-task
for each ego network, where the compared measures are used to
calculate the relevance between all pairs of non-ego users in this
ego network.

We use two evaluation metrics widely adopted for tasks with
multiple relevant instances: the area under the receiver operating
characteristic curve (ROC-AUC) and the area under precision-recall
curve (AUPRC). �e receiver operating characteristic curve (ROC)
is created by plo�ing true positive rate against false positive rate
as the threshold varies, while the precision-recall curve (PRC) is
drawn by plo�ing precision against recall as the threshold varies.
Higher values are more preferred for both ROC-AUC and AUPRC.
We further average each of the above metrics across ego networks
with the following methods – uni.: averaging over all ego networks
uniformly; rel.: weighting by the number of relevant pairs in each
ego network; tot.: weighting by the total number of pairs in each
ego network.

�e DBLP dataset. �is dataset is derived from the DBLP dataset
processed by Tang et al. [18] containing computer science research
papers together with author names and publication venue associ-
ated to each paper. It consists of 13, 697 nodes and 19, 665 edges,
among which 1, 546 nodes are of the author type. Notably, in this
dataset, the same author name associated with two papers may
not necessarily be the same person. Based on this fact, we design
an entity resolution task as follows. First, we use the labels made
available by Tang et al. [18] to group all author name mentions
corresponding to one person to de�ne an author node. In this way,
an author node is linked to multiple papers wri�en by her. �en,
for each author name, we split the author node with the most au-
thor name mentions into two nodes, and we de�ne two nodes to
be relevant if and only if they actually refer to the same person.
Finally, we perform one sub-task for each author name, where the
compared measures are used to calculate the relevance between all
pairs of nodes with the same author name.

We use 14 meta-paths in this task, each of the form [author]–
[paper]–[venue domain]–[paper]–[author], where a node of the
venue domain type corresponds to one of the 14 computer science
research areas. �e de�nition of the 14 areas is derived from the
Wikipedia page: List of computer science conferences1. Since only
one relevant pair exists in each sub-task, the mean reciprocal rank
(MRR) is used as the evaluation metric, where, for each sub-task,
the reciprocal rank is the reciprocal of the rank of the relevant pair.
Higher values indicate be�er results for MRR. We also average the
above metrics across di�erent sub-tasks using three methods: uni.,
rel., and tot. Note that uni. and rel. are equivalent in this entity
resolution task because each sub-task has exactly one relevant pair.

6.2 Baselines and Variations
In this section, we describe the meta-path-based baseline methods
and variations of the PReP model, which are used to compare with
our proposed full PReP model. Existing meta-path-based unsuper-
vised HIN measures de�ne relevance computation method on each
meta-path and then use linear combination to �nd the composite
score. �erefore, each baseline consists of two parts: (i) the base

1h�ps://en.wikipedia.org/wiki/List of computer science conferences
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Dataset Metric PathCount PathSim JoinSim SimRank PReP
Mean SD Mean SD Mean SD Mean SD No-NV No-PS No-CS (full)

Facebook

ROC-AUC
uni. 0.8056 0.8598 0.8367 0.8586 0.8326 0.8547 0.7977 0.8303 0.8310 0.6702 0.8689 0.8850
rel. 0.8612 0.8879 0.8578 0.8888 0.8556 0.8872 0.8076 0.8596 0.8556 0.6713 0.8880 0.9133
tot. 0.8558 0.8849 0.8577 0.8866 0.8557 0.8851 0.8096 0.8594 0.8547 0.6773 0.8893 0.9139

AUPRC
uni. 0.2456 0.2832 0.2370 0.2845 0.2340 0.2803 0.2055 0.2435 0.2183 0.1650 0.3273 0.3269
rel. 0.2496 0.3048 0.2142 0.2873 0.2117 0.2837 0.1764 0.2408 0.2067 0.1283 0.3354 0.3486
tot. 0.2107 0.2542 0.1841 0.2460 0.1821 0.2432 0.1523 0.2071 0.1760 0.1089 0.3010 0.3080

DBLP MRR uni./rel. 0.8091 0.8130 0.6922 0.7003 0.7454 0.7538 0.6636 0.6738 0.8223 0.8494 0.8365 0.8517
tot. 0.7839 0.7871 0.6612 0.6731 0.7128 0.7244 0.6302 0.6357 0.8234 0.8407 0.8264 0.8391

Table 3: �antitative evaluation results on two real-world datasets using the proposed measure, PReP, and other measures.

measure that calculates the relevance score on one meta-path, and
(ii) the weights assigned to di�erent meta-paths used in the linear
combination. �e 4 base measures we used are:
• PathCount [17]. PathCountw (s ) B

∑
t wtPst .

• PathSim [17]. PathSimw (s ) B
∑
t wt ·

2·P〈uv 〉t
P〈uu〉t+P〈vv 〉t

.

• JoinSim [20]. JoinSimw (s ) B
∑
t wt ·

P〈uv 〉t√
P〈uu〉t ·P〈vv 〉t

.
• SimRank. We adopt SimRank [8] with meta-path constraints.

Let A be a matrix, where Auv is the number of paths under
this meta-path between node pair (u,v ) a�er column normal-
ization. �e SimRank score is then given by Suv , where S is
the solution to S = max{C · (A>SA), I }, and C is the decay
factor to be speci�ed. Note that we use SimRank instead of
random walk with restart because SimRank is a symmetric
relevance measure.

Without any supervision available, we use 2 heuristics to determine
the weights w for linear combination.
• Mean. Let wt be the reciprocal of the mean of all scores

computed using the corresponding base measure on meta-
path t .

• SD. Let wt be the reciprocal of the standard deviation of all
scores computed using the corresponding base measure on
meta-path t . Note that this heuristic normalized the original
score in the way similar to z-score.

Combining the aforementioned 4 base measures and 2 heuristic for
se�ing weights, we have 8 baselines in total.

Additionally, we also experiment with three variations of PReP,
which are partial models with one of the three components knocked
out from the full PReP model.
• No node visibility (No-NV): Set ρ = 1 |V | , and do not update
ρ during model inference.

• No path selectivity (No-PS): Set η = 1T , and do not update η
during model inference.

• No cross-meta-path synergy (No-CS): Set Φ = 1 |V |×K /K , Θ =
1 |V |×T /T , and do not update Φ and Θ during model inference.

Note that 1M stands for all one column vector of size M and 1M×N
denotes all one matrix of size M × N .

6.3 E�ectiveness and Discussion
In this section, we present the quantitative evaluation results on
both the Facebook and the DBLP datasets. We tune the decay factor
C in the baseline measure, SimRank, to have the best performance
withC = 0.5 for both SimRank-Mean and SimRank-SD on Facebook,

and C = 0.8 for SimRank-Mean, C = 0.7 for SimRank-SD on DBLP.
We set hyperparameters of PReP as K = 15 and β = 10−4 for
Facebook and K = 14 and β = 10−2 for DBLP. �e choice of
hyperparameters will be further discussed in this section.

As presented in Tab. 3, PReP outperformed all 8 baselines un-
der various metrics. Moreover, PReP outperformed its 3 variations
under most metrics, suggesting each component of the model gener-
ally has a positive e�ect on the performance of the full PReP model.
Note that under MRR (tot.), PReP performed slightly worse than
PReP-No-PS, the partial model without ηt for path selectivity. �is
happened because, as discussed in Sec. 4, we cannot enforce task-
speci�c design on path selectivity ηt due to the lack of supervision,
and we expect path selectivity ηt to play a more important role in
future work where relevance labels are provided as supervision.

Additionally, we have made the following observations.

Heuristic methods cannot yield robust relevance measures.
Compared with PathCount, both PathSim and JoinSim further
model node visibility, which penalizes the relevance with nodes
that are highly visible. However, as Tab. 3 presents, PathSim and
JoinSim cannot always outperform PathCount. Moreover, JoinSim
performs be�er than PathSim on DBLP, while PathSim is slightly
be�er than JoinSim on Facebook. We interpret these results as, Path-
Sim and JoinSim model node visibility in a deterministic heuristic
way. Unlike our generative-model-based measure that derives rele-
vance measure based on parameters inferred from each HIN, the
heuristic approaches adopted by PathSim and JoinSim have varying
performance on di�erent HINs. �is suggests being data-driven is
a favorable property of PReP.

Non-one-hot generating patterns help onlywhenmeta-paths
correlate. In our experiment, we set K = 14 = T for DBLP. Recall
that we initialized the �rst T rows of Θ, the matrix representing
the K generating pa�erns, to be T one-hot vectors corresponding
to T meta-paths. We observed in the DBLP experiment that a�er
model ��ing, Θ was still the same as its initialization, meaning each
inferred generating pa�ern only generated path instances under
exactly one meta-path. Moreover, by increasing the value of K , we
did not see improvement in performance. �is observation is inline
with the situation that it is not frequently seen that two authors
both publish papers in two distinct research areas, where the 14
areas on the Wikipedia page have been de�ned to be distinct areas
including theory, so�ware, parallel computing, etc. In this case, it
is preferred to model synergy across every pair of meta-paths, and
not to employ any non-one-hot generating pa�erns.
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(a) Facebook (b) DBLP

Figure 3: Performance with varying β .

On the other hand, we usedK = 15 > T for Facebook, and we did
observe non-one-hot generating pa�erns a�er model ��ing. �e
most popular non-one-hot generating pa�ern consisted of three
meta-paths: [user]–[hometown]–[user], [user]–[school]–[user],
and [user]–[user]–[user], where we de�ne popularity of a generat-
ing pa�ern as the fraction of node pairs adopting this pa�ern, i.e.,
pop(k ) =

∑
s ∈S ϕsk . �is generating pa�ern corresponds to two

users sharing the same hometown, the same school, and having
common friends. �is scenario is common for two people sharing
similar friend group back in the hometown school.

Sensitivity of β in modeling cross-meta-path synergy. In
the PReP model (Eq. (6)) and relevance measure (Eq. (7)), the con-
centration parameter β of the Dirichlet prior controls the extent
to which we boost cross-meta-path synergy. Experiment results
in Fig 3 shows performance of PReP do not signi�cantly change
around the values we have set for β , i.e., 10−4 for Facebook and
10−2 for DBLP.

7 RELATEDWORK
In this section, we review the study on HIN relevance. �e problem
of deriving relevance between node pairs has been extensively stud-
ied for homogeneous information networks. Relevance measures
of this type include the random walk based Personalized PageR-
ank and SimRank [8], the neighbor-based common neighbors and
Jaccard’s coe�cient, the path-based Katz [5], etc. To generalize rele-
vance from the homogeneous networks to the typed heterogeneous
case, researchers have been exploring from multiple perspectives.
One perspective, as in PathCount and PathSim from [17] and Path-
Constrained Random Walk from [10], is to �rst compute relevance
score along each meta-path, and then glue scores from all types
together via linear combination to establish the composite mea-
sure. A great many applications [9, 14, 16, 22, 24] based on this
meta-path paradigm with linear combination have been proposed.
Our proposed method follows this meta-path paradigm, but goes
beyond linear combination to model cross-meta-path synergy that
we have observed from real-world HINs. Another perspective is to
go beyond meta-path and derive relevance based on the more com-
plex graph structures [4, 7]. While these approaches can yield good
performance, they di�er from our proposed methods for further en-
tailing label information or expertise in designing graph structure.
Also, they do not carry probabilistic interpretations. Besides, people
have explored the idea of incorporating richer information [6, 21] to
de�ne more e�ective relevance scoring functions, or adding super-
vision to derive task-speci�c relevance measures [2, 19, 23]. While

being valuable, these works are out of the scope of the problem we
study in this paper, where we address the basic, unsupervised case
with no additional information as our starting point of studying
HIN relevance from the probabilistic perspective.

8 CONCLUSION AND FUTUREWORK
Inspired by the probabilistic interpretation of existing path-based
relevance measures, we studied HIN relevance from a probabilistic
perspective. We identi�ed cross-meta-path synergy as one of the
three characteristics that we deem important for HIN relevance.
A generative model was proposed to derive a novel path-based
relevance measure, PReP, which could capture the three important
characteristics. An inference algorithm was also developed to �nd
the maximum a posteriori (MAP) estimate of the model parameters,
which entailed non-trivial tricks. Experiments on real-world HINs
demonstrated the e�ectiveness of our relevance measure, which is
data-driven and tailored for each HIN.

Future work includes the exploration of de�ning relevance from
the proposed PReP model with marginal likelihood as discussed in
Sec. 4.2. Further add-on designs to adapt the proposed model to a
supervised se�ing are also worth exploring to unleash the potential
of our model.
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APPENDIX
We provide the algorithm for e�cient projection onto the standard
simplex shrunk by δ , {x ∈ RK |xi ≥ δ ,

∑K
i=1 xi = 1}, in Algorithm 2.

Algorithm 2: E�cient projection onto shrunk simplex
Input : the original vector z ∈ RK and the shrinking factor δ
Output : the projection x ∈ RK

begin
Sort z into u: u1 ≥ u2 ≥ . . . ≥ uK

ρ ← max{1 ≤ j ≤ K |uj +
1
j (1 − δK −

∑j
i=1 ui ) > 0}

λ ← 1
ρ (1 − δK −

∑ρ
i=1 ui )

xi ← max{zi + λ, 0} + δ

�e validity of this algorithm can be established in a way similar
to the proof of the algorithm for standard simplex [3].
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